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演示者
演示文稿备注
The online training process of the classifier is based on each input sequence. In the initial frame, multiple samples are collected and labeled based on their overlapping extent with the ground truth annotation. They use these samples to train a binary classifier which differentiates the target and background in the next few frames.
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演示者
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The state-of-the-art tracking-by-detection framework typically consists of two steps to localize target object. In the first step, they draw multiple samples near the target region of the previous frame and then classify each sample as either the target or the background. 


201958H21H

WP B

EEBRF AT EREHAR

12



5 &I -

4
(-
[o

tRE

201958H21H

AR B

EEBRF AT EREHAR

13



VS 5325

LCT HCF CREST  DSLT TADT UDT
= CVPR15 [ ICCVIS  ccy17  ECCVI8  CVPR19  CVPR19
El JCV18 | TPAMI1S

— 2015 2017 2018 2019
M N VITAL DAT
fé REFY €[>REF CVPR18 NeurlPS18
ETHEE \ \ 43 Scpm
o &M E o EIHEERI N E]
- H{EFIRZERERHLE o {KERFEHLSEAE

« REABU

201958H21H

« RIESUR

EEBRF AT EREHAR 14



VS 5325

- LCT HCF CREST  DSLT TADT UDT
= CVPRT5 [NCCV15>  ccy17  ECCVI8  CVPR19  CVPR
El JCV18 | TPA
— 2015 2017 2018 2019
M N VITAL DAT
fé REFY € |PREF CVPR18 NeurlPS18
ETEE \ \ 43 Scpm

o LEHEREE N [E] o EIHEERI N E]

- H{EFIRZERERHLE o {KEABENE

o REAER o REBIRL
2019488211 HERSEAE A TSRS 15



20198H21H EEBRF AT EREHAR 16


演示者
演示文稿备注
In visual tracking, we aim to locate single target object in the videos. Given one ground truth object annotation in the first frame, we develop algorithms to track the target object in the remaining frames. As there is no prior knowledge of the target object expect for the first frame annotation, it is quite challenging to accurately track the object, especially when it contains significant appearance variations. Examples include in-plane and out-of-plane rotation, illumination variance, occlusion and deformation. 


(@) Observations

Spatial Details Our Approach Semantics
Early layers of CNN e.g., intensity, Gabor filter Exploiting both spatial details and semantics Last layer of CNN e.g., fc7 in VGGNet

t
-
-

. Conv3-4 Conv4-4 Conv5-4

Conv1-2

- Earlier layers retain higher spatial resolution for precise
localization

- Latter layers capture more semantic information and are
robust to appearance changes

« Exploit the rich hierarchies for robust visual tracking
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Conv4
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Conv4 Convs ' /
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« Layer conv5 robust to appearance change: insensitive to the
sharp step edge

Normalized Intensity
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o
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« Layer conv3is useful for precise localization: sensitive to the
edge position
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O Position in Estimated
last frame position

Cropped Search Window Tracking Output

« C. Ma et al, Hierarchical convolutional features for visual tracking, ICCV 2015

« C. Ma et al, Robust visual tracking via hierarchical convolutional feature,
TPAMI 2018
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Best-Buddies Similarity - Robust Template
Matching using Mutual Nearest Neighbors

Shaul Oron, Tali Dekel, Tianfan Xue, William T. Freeman, Shai Avidan

using deep features taken from a pre-trained neural net. Using such
deep features is motivated by recent success in applying features
taken from deep neural nets to different applications [37], [38].

[37] C. Ma, J.—B.l Huang, X.k Yang, and M.-H. Yang, “Hierarchical con-
volutional features for visual tracking,” in Proceedings of the IEEE
International Conference on Computer Vision), 2015. 4
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Detect to Track and Track to Detect

Christoph Feichtenhofer * Axel Pinz Andrew Zisserman
Graz University of Technology Graz University of Technology University of Oxford

feichtenhofer@tugraz.at axel.pinz@tugraz.at az@robots.ox.ac.uk

ConvNet. To achieve this we propose to extend the R-FCN

[2] detector with a tracking formulation that is inspired by

current correlation and regression based trackers [1, 13, 25].

We train a fully convolutional architecture end-to-end us-

[25] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical
convolutional features for visual tracking. In Proc. ICCV,
201529578
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@®)) Problems of HCF

» Existing correlation filter frameworks are
empirically designed:

o T
@

. T

- Filter weights training, model update,

convolutional feature integration, etc.

ne whole framework has not been
otimized end-to-end

ne deep architecture has not been fully

exploited.

Why not integrate both as a whole?



&) Our Method: Overview

Feature Extraction

\ One conv layer: DCF

Y 1 =

Feature map Response map

J

End-to-end prediction and optimization

Key idea: reformulate correlation filter as one convolutional layer
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Prediction Result
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Our Method: Motivation

X=>H (X) Optimal ground truth prediction

X=>F (X) Practical prediction

X>H (X ) —F (X ) Residual prediction

20198H21H EEBRF AT EREHAR 27



@) Our Method: Residual Layer

+
Weizght Laver
Fg(X) * 4 Relu Fr(X)
Base Mapping | Weight Layer Weight Layer| Residual Mapping
1 Relu

J, Weight Laver
|

FaX) +FaCt) |

I3

NI =St e ez SEEER 4R
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@) Base and Spatial Residual Learning

. Base mapping: DCF
Feature Extraction

= h

Frame T Frame T
Feature map (X X ) Response Map

Residual mapping
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@) Temporal Residual Integration

Base mapping: DCF

Frame T ¥ T
rame o=
Feature Extraction
NG N L "=
i <7
- Vi Feature map oo
g
Frame 1 -| 000 Frame 1 Spatial Residual Response Map
: i N
) AU ﬁ - oo
g
N T Feature map Temporal Residual

Y. Song, C. Ma, L. Gong, J. Zhang, R. Lau, and M.-H. Yang, "CREST: Convolutional
RESidula Learning for Visual Tracking," in ICCV 2017.
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Results on OTB-2013
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Precision plots of OPE
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®)) Problems of CREST

» One-stage deep regression trackers do
not perform as well as correlation trackers
- CREST: 90.9% vs ECO (CVPR" 17) 92.2% on
OTB-2013
- Data imbalance in regression learning

- Residual response map learning vs residual
feature learning
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@) Data Imbalance Issue

 Histogram of the difference values between
regression outputs and labels

104§

Easy training
samples
dominates the
difference values

103 ¢

Frequency
=
nN

101 E

100 1 1 1 1 | 1 1 1
01 02 03 04 05 06 07 08 09 1

Regression label value
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@) Regression Loss

L, =|p— y|2 — [? p: regression out, y: ground truth label
Lp; = 1Y X L, focal loss (ICCV 2017) in regression learning

LFL=L3=ZXL2=l3 Wheny=1,

—_ Lo . : :
Ls = T¥exp(a+I=D) we use the Sigmoid function as the modulator
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Our shrinkage loss penalizes the importance of the easy samples
only, whereas the focal loss (L3) penalizes the importance of

Input value

both easy and hard samples.
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Architecture of Our network

Conv1 | S
=
Conv2 | %
| >
Conv3 | g
Conv4 | (&)
Convb | c
o
| -
T =]
] | Channel el ) ° <:) >
Reduction DeCony ~ %|_ >
| h/16 eConv Y c
h8 o
Max pooling Conv5_3 | Conv5_3 w/8 o
lax pooling Conv4_3 | Conv5_3"
ax pooling |
/ax pooling | Channel Reduction Response Map
Ll_ | h/8
Search Area | /8 Prediction
| Conv4_3'

X. Lu*, C. Ma*, B. Ni, X. Yang, |. Reid, and M.-H. Yang, "Deep Regression Tracking
with Shrinkage Loss", in ECCV 2018
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OTB-2013

Precision plots of OPE on OTB-2013

Success plots of OPE on OTB-2013
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Convergence speed

Training loss

Loss plots Histogram of average iterations
7 T . T . T 50
Shrinkage loss
6 L3 loss I 42.71
L2 loss
40 38.32
OHNM o 36.16
5H =
.S 35 33.45
T
(0]
4 ] -5) =0
£
C
3 25
3 (] . R
g 20
©
ol 1 215
10
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~— L 50
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0 50 100 150 200 250 300 Shrinkage loss L3 loss L2 loss OHNM
Number of iterations Different loss functions
NS — PNy [
20198821H EaEXRE ATLEeEHR 40




Vs -“\\
R o
[l .“n
{21 Conclusion
7&& IS %r
‘V/jMO mNﬁ\ﬁ\ -/

» Correlation filters can be reformulated as
CNN layers via end-to-end learning

- Deep regression trackers c

o not perform

as well as the DCFs trackers due to data

Imbalance

» Shrinkage loss can effectively deal with
data imbalance in regression learning



@) Problem of pre-trained features

High-dimension

'ﬂ"’.' Little spatial information

Pre-trained on object
recognition task

Using pre-trained deep features on object recognition
for visual tracking may lead to the following issues:

- Ineffective target representation.
- Inaccurate scale estimation.
- High computational loads.

20198H21H EEBRF AT EREHAR 42
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Ineffective target representation caused by the unknown target problem. 
The target is not given before tracking and it can be of arbitrary forms.
Unlike other vision tasks, such as classification and detection, object category is given before testing. 
As a result, the pre-trained features may be ineffective in representing the target when the target class does not appear in the offline training data.
Insensitive to scale estimation.
The deep features trained on the classification task do not retain much spatial information. However, spatial information is crucial for accurate localization and scale evaluation in the tracking task.
High computational loads.
Pre-trained deep features are high-dimensional, which are necessary for identifying a thousand classes. However, the tracking task only need to distinguish the target from the background.





X. Li, C. Ma, B. Wu, Z. He, and M.-H. Yang , "Target-Aware Deep Tracking ",
in CVPR 2019
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We present our framework here. It consists of a general CNN feature backbone network, a target-aware model, and a correlation matching module.

1) The general CNN network is pre-trained for the object recognition on large offline data.

2) The target-aware model is constructed with a regression loss part and a ranking loss part.
It selects the target-aware filters with target-active and scale-sensitive information from the pre-trained CNNs. 

3)The correlation matching module computes the similarity score between the template and the search region. The maximum of the score map indicates the target position.


N —> conv Prediction

Back- propagation

/4 7
< Ridge Loss

Channel importance o - mmi<— GAP <“"

* Regressing the features of the candidates to a Gaussian label map

indicating the target position.
* Finding the target-active channels based on the gradient values with

global average pooling (GAP).
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In a pre-trained classification network, each convolutional filter captures a specific feature pattern and all the filters construct a feature space containing different objectness priors.

For the visual tracking task, we can obtain the filters with objectness information
pertaining to the target by identifying those active to the target area while inactive to the backgrounds.

To this end, we regress all the candidates in an image patch aligned with the target center to a Gaussian label map.

The regression model is implemented with a convolutional layer and a ridge loss layer.




‘&) Target-Active Features via Regression

We define the regression loss as:
2
Lyeg = ||Y = W = Xjn||” + 2lW]|2

where X;,,, Y, and W denote the input features, the label map, and the weights.

The gradient of the regress loss with respect to the input feature is computed by

aLreg _ aLreg % aXo(i»j)
aXin i aXo(irj) aXin(irj)

_ z 2(Xo(i,)) = Y (i, ) X W
07

where X, = W * X;,, denotes for the output prediction of the regression convolutional
layer.
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The importance of each filter can be computed based on its contribution to fitting the label map, i.e., the derivation of L_{reg} with respect to the input feature X_{in}.

Note that the gradient is the derivation with respect to the input feature rather than the regression weights.


Channel importance

Pair-wise samples

Label of the pair i é
(x;, %) %'%
———> conv Prediction g g
1] - [0
0 [
4 2 ¢_‘
<— GAP [« N <« Ridge Loss

* Finding the scale-sensitive channels based on their contribution to scale changes.

201958H21H
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To generate scale-sensitive features, we need to find the filters that are most active to the target scale changes.

We rank the training sample whose size is closer to the target size higher.

We adopt pair-wise training samples whose first item ranks higher than its second item, for example a pair can be (x_i, x_j) and Rank(x_i)> Rank(x_j).

Its label is computed as l_(i,j) = z_i – z_j, where z_k is an one-hot vector with
the k-th element being 1 while others being 0

The gradients of the ranking loss indicate the importance of the filters to be sensitive
to scale changes.



ScaIe—Sensitive Features via Ranking

We exploit a smooth approximated ranking loss [1] as:

Lyane = log(1+ ) exp(f(x) = () ,
(xi,x;)EQ
where (x;, x;) is a sample pair and the size of x; is closer to the target size compared to x;,
f(x; w) is the prediction model, and Q is the set of training pairs.

The gradient of L., With respect to the features is computed as:

aLramk — aLramk x axo aLramk

) 0x 0% Oxin  Of (tin)

Where 56 = ~ Ty 20 0%, ep( - feR5)Nz; i = z; — z; and zy, is a one-hot vector with the k-th
element being 1 while others being 0.

xXW,

[1] Yuncheng Li, Yale Song, and Jiebo Luo. ““Improving pairwise ranking for multi-label image classification." CVPR 2017
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To find the scale-sensitive features, we construct a ranking loss to calculate the contribution of each channel for regressing the input features to sorted labels based on the target scale.

 𝑋 𝑖𝑛  and  𝑋 𝑜  denote for the input feature and the output prediction of the regression convolutional layer.

On top of the gradients, we compute the importance of each channel with a global average pooling.

We select a fixed number of channels with the highest importance for generating scale-sensitive features.


#)) Analyses of the generated features

Distributions of the original and target-aware features using the t-SNE method.

Base features Target-aware features

150 150
L ]
[ ] g @
100 | o 100 | ee’c o
- . L
5{] i u 5{] i L ] s -‘ . s 8@ -
" »
0 ﬁ' 0p . . -. '. . .'
od *e s ¥
-50 @ -50
100 : 100 cet e o
®  Human7 ® Human? | ® .'.' '- .
150 | * Humang 450 | o Humang |® S e o
® Crossing ® Crossing
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=200 -100 0 100 -200 -100 0 100

201958H21H

Distributions of intra-class targets (pedestrian).
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To give an analysis of the generated features, we compare the distributions of the original and generated features using the t-SNE method.

In the figure, each point denotes for one object sample. We randomly select 20 frames from each video.
We first give the comparison on similar objects (Human7, Human9, Crossing), which all belong to the pedestrian category but in different videos. 

The figure shows that the target-aware features are more sensitive to intra-class differences for each video.


®)) Analyses of the generated features

Base features Target-aware features
e Deer ' ' & [Deer
50 e Dog y a0 e« Dog
. " :
* Bike . ° * Bike -t -‘- .,
0 «f *® o . ) 0 ot ..':
. - oo’ '.'. . °* o %
': I'.l L :I - . ® -' a9
-50 s - 1 -=2Ur se ** . e
[ ] » [ ] -- -.. L ] '.
[ i
-100 t ...:‘ 1 100 ™ .,
-100 a0 0 50 100 100 -50 0 50 100
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We also give a comparison of objects (Deer, Dog, Bike) belonging to the different categories. 

Points of different colors belong to different object classes. 

It shows that the target-aware features separate objects of different categories more effectively.


Visualization of the generated features

Input images Conv4-1 w/o and w/ ranking Conv4-3 w/o and w/ Target-aware
and regression loss regression loss
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This figure shows the visualization of the original and the learned target-aware features.
The visualized images are generated by averaging all feature channels.

From left to right on each row are 
the input images, 
pre-trained deep features (Conv4-1) without and with ranking and regression losses for learning scale-sensitive features, 
pre-trained deep features (Conv4-3) without and with a regression loss for learning target-active features, 
and the overall target-aware deep features.

Notice that the original pre-trained features are not effective in describing the
targets, while the target-aware features can readily separate the targets from the background.


@) Tracking pipeline

- Model initialization: » Online detection:

- Computing the similarity

- fine-tuning the initial
scores between the target

frame
template and the search
- Computing gradients region

- Selecting Filters

’ W 11 y-
II po T T T ~ II’
: 5

Target aware

L.

!jl

Gradient | Gradient
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Experimental results

Success plots of OPE

Success plots of OPE

0.8 | 08 |
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We evaluate the proposed tracker, on the visual tracking OTB-2013 and OTB-2015 datasets. The distance precision and overlap success rates shown in these figures indicate that the proposed tracker performs favorably against state-of-the-art approaches. 



Introduction: Supervised vs. Unsupervised

* Recent trackers mostly rely on the deep convolutional neural

network (CNN).
* Training a CNN model requires expensive annotated ground-

truth labels
* Unlabeled videos are readily available on the Internet

Forward tracking Forward and Backward tracking

Annotated sequences Unlabeled sequences
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Our Approach: Forward-backward Training
Pipeline

* Forward tracking using initial label
* Backward tracking using pseudo label
* Consistency loss computation

Template Patch Search Patch

Initial Label .

|
Forward Tracking gn |
using % Correlation |
Initial Label = Filter I
= |
= 1
= .
z Consistency
o)
= o T Loss
Backward Tracking = ] T
using : Pseudo Label :
Pseudo Label - 1 l |
£ ! ,
= Correlation \
E Filter Respanse ;
= ——d
=
=
Consistency Loss g ]
Computation =
g
-4

(a) Unsupervised Learning Motivation (b) Unsupervised Learning Pipeline using a Siamese Network
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O;ﬁ&lOur Approach: Forward-backward Training Pipelin

* Correlation filter based tracking:

win [[W + X = Y5 + AW,

W_§_1< 7 (X) 0 F*(Y) )

F*(X) O F(X) + A
* Forward tracking using Template and Initial Label:
Wt =71 ( F(po(T)) © F*(YT) ) Template Patch Search Patch
F*(00(T)) © Z(pa(T)) + A )

Rs = Z 1(F*(Wr)® F(p9(9))).

* Backward tracking using original search
patch and pseudo label:

Switch the role between template and search
patches Treat Rs as the pseudo label
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oo Our Approach: Forward-backward Training
‘== Pipeline

Compute Consistency Loss :

Ideally, R and Y should be similar:

Lun = ”RT - YTH%*

Update the network parameters by back-propagation :

s =" oty Gotemy) )

OLoun _9-1( OLon )
000 (S) O(Z (¥0(8)))" /)
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\42 Our Approach: Multiple Frames Validation

® The tracker may successfully return to the initial target
location from a deflected or false position.

® By simply involving more search patches, the proposed
consistency loss will be more effective to penalize the
inaccurate localizations.

2
e Search

! Patch #1

Template Patch  Search Patch Template Patch

Search

Coincidental Success Error Accumulation
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Our Approach: Cost-sensitive Loss

To reduce the contributions of noisy pairs, we exclude 10% of
the whole training pairs which contain a high loss value.
The target with a large motion contributes more to the

network training. Therefore, we compute the motion distance
as follows,

i i i i i |2
Amotion = HRsl o YTH; + HRS2 o YSl H2’

AZ’ _ drop motion

norm n 1 i ?
Zi:l Adrop ) Arnotion

1~
[fun:EZ;A;orm"

~ . 112
(2 (2
R — Yo .
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Unlabeled sequences in the wild

20195F8H21H

Template or search patches

Some examples:
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Experiments: State-of-the-art Comparison

* (QOTB-2015 dataset: 100 challenging videos

* Our UDT tracker achieves comparable results with the
baseline supervised methods. Adding some online tricks,
our UDT+ achieves state-of-the-art performance

Precision plots of OPE Success plots of OPE

1
09F = 0.9
% 07r ——ACT [84.2] 1 Q%7 [—uDT+[63.2)
S osh —UDT+ [83.1] 1 B sl |—ACT[62.5]
= ——ACFN [79.4] 73 —UDT [59.4]
o L ] L
B —SiamFC [77.1] § 05 SiamFC [58.2]
S oaf CSR-DCF [77.0]| { © 04| |—CSR-DCF [58.1]
Pt —UDT [76.0] a ——ACFN [57.0]
O o3f : 03+
——SCT[76.0] —CFNet [56.8]
02f ~——CFNet [74.8] . 02+ |—SCT [53.7]
ol ~—KCF [69.6] oiL [T—DSST[51.8]
' —DSST [68.9] | |[—KCF [48.5]
0D 16 20 :;D 46 50 00 0?2 DT4 0.6 0.8 1
Location error threshold (pixels) Overlap threshold
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* We propose an unsupervised tracker
* We propose a multiple frames validation and a cost-
sensitive loss to facilitate the unsupervised training

1 o , y P
@l ;‘. rﬁt 4 S‘W =756 . s
5 l‘}: |ﬁ, e R multi-frame validation

M 4
1 ”,’ _ Al L4 < |

cost-sensitive loss

Forward tracking Forward and Backward tracking

Annotated sequences Unlabeled sequences
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Our method achieves baseline accuracy of
the classic fully-supervised trackers

Unsupervised framework shows potential in
visual tracking:
For example: few-shot learning, adding
more data, domain adaptation......
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