NCIG2O2O 第二十届全国图象图形学学术会议 The 20th National Conference on Image and Graphics

图像图形智能处理

6月28日-30日 🕑 线上召开

主办单位: 🥌 中国图象图形学学会 承办单位: 🏵 新疆大学 协办单位: 🐻 南京理工大学 金牌赞助: TSINGLINK 清新互联 🛄 OUTech 合肥寰景公司 银牌赞助: 🕥 航天宏图 Piesat Piesat

NCI G 2020 第二十届全国图象图形学学术会议 The 20th National Conference on Image and Graphics

防深度攻击的鲁棒性目标跟踪算法

NCIG2020 第二十届全国图象图形学学术会议

上海交通大学人工智能研究院助理教授 上海交通大学与加州大学默塞德分校联培博士 澳大利亚机器人视觉中心(阿德莱德大学)博士后 中国图象与图形学会优博,上海市浦江人才 IJCAI 2019计算机视觉Session Chair CVPR 2018、CVPR 2019优秀审稿人 多层级深度目标跟跟踪单篇论文谷歌学术引用 1200+,总引用3700+

Outline

02 Robust Tracking against White-Box Attacks

03 Robust Tracking against Black-Box Attacks

04 Conclusions

Visual Tracking and Applications

Background: Adversarial Attack

- Adversarial examples are intentionally designed inputs to cause machine learning models to make mistakes.
- Threat model defines the rules of the attack.

Taxonomy

Attack:

- Targeted Attack / Non-targeted Attack;
- Digital attack / nhysical attack.
- Single-ste
- White-boy network.
- Black-box
- Transfer-t

Defense:

 \boldsymbol{x}

"panda"

57.7% confidence

 $+.007 \times$

- $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta}, \boldsymbol{x}, y))$
 - "nematode" 8.2% confidence

neural

lversaries.

- $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence
- Gradient Masking, Robust Optimization and Adversary Detection.

One-Shot Adversarial Attacks on Visual Tracking With Dual Attention

- Designed for *Siamese*-based tracker. (SiamFC, SiamRPN, SiamRPN++, SiamMask)
- The proposed attack consists of two components and leverages the dual attention mechanisms.
- One is optimizing the batch confidence loss with confidence attention while the other is optimizing the feature loss with channel attention.

[1] Chen, X., Yan, X., Zheng, F., Jiang, Y., Xia, S., Zhao, Y., Ji, R.: One-Shot Adversarial Attacks on Visual Tracking With Dual Attention. In: CVPR (2020)

Cooling-Shrinking Attack: Blinding the Tracker With Imperceptible Noises

First row :search regionSecond row :clean heatmapsThird row :adversarial heatmaps

- Designed for *SiameseRPN*-based tracker.
- A perturbation generator is trained to simultaneously cool hot regions where the target exists on the heatmaps and force the predicted bounding box to shrink.

[1] Yan, B., Wang, D., Lu, H., Yang, X: Cooling-Shrinking Attack: Blinding the Tracker With Imperceptible Noises. In: CVPR (2020)

Outline

02 Robust Tracking against White-Box Attacks 03

Robust Tracking against **Black-Box Attacks**

Conclusions ()4

Our Motivations:

ſял

Variations of adversarial perturbations during attack and defense

Baseline Tracker 1: DaSiamRPN

 DaSiamRPN is a end-to-end trained off-line tracker, consisting of Siamese subnetwork for feature extraction and region proposal subnetwork including the classification branch and regression branch.

[1] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: ECCV (2018)

Baseline Tracker 2: RT-MDNet

• RT-MDNet is composed of shared layers and multiple branches of domain-specific layers. When tracking a target in a new sequence, it combines the shared with a new binary classification layer, which is updated online.

[1] Jung, I., Son, J., Baek, M., Han, B.: Real-time mdnet. In: ECCV (2018)

Our Method: Adversarial Example Generation

Our Method: Adversarial Example Defense

Experimental Results: Ablation Study

Ablation studies of DaSiamRPN on the OTB-2015 dataset. We use *Cls* to represent the attack on the classification branch and *Reg* to that on the regression branch. In the regression branch, *offset* and *scale* represents the offset and scale attacks.

Experimental Results: Ablation Study

Ablation studies on temporal consistency of DaSiamRPN on the OTB-2015 dataset. *Temporal* denotes using temporal consistency in adversarial attack.

Results of DaSiamRPN on OTB100 dataset

上海交通大学 Shanghai Jiao Tong University

Results of RT-MDNet on OTB100 dataset

Results of DaSiamRPN on UAV123 dataset

Ís.

Results of RT-MDNet on UAV123 dataset

Results on VOT2018 dataset

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	$EAO\uparrow$
DaSiamRPN	0.585	0.272	58	0.380
DaSiamRPN+RandAtt	0.571	0.529	113	0.223
DaSiamRPN+Att	0.536	1.447	309	0.097
DaSiamRPN+Att+Def	0.579	0.674	144	0.195
DaSiamRPN+Def	0.584	0.253	54	0.384

18

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	$\mathrm{EAO}\uparrow$
RT-MDNet	0.533	0.567	121	0.176
RT-MDNet+RandAtt	0.503	0.871	186	0.137
RT-MDNet+Att	0.475	1.611	344	0.076
RT-MDNet+Att+Def	0.515	1.021	218	0.110
RT-MDNet+Def	0.529	0.538	115	0.179

Results on VOT2016 dataset

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	$EAO \uparrow$
DaSiamRPN	0.625	0.224	48	0.439
DaSiamRPN+RandAtt	0.606	0.303	65	0.336
DaSiamRPN+Att	0.521	1.613	350	0.078
DaSiamRPN+Att+Def	0.581	0.722	155	0.211
DaSiamRPN+Def	0.622	0.214	46	0.418

Ís.

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	$\mathrm{EAO}\uparrow$
RT-MDNet	0.567	0.196	42	0.370
RT-MDNet+RandAtt	0.550	0.452	97	0.235
RT-MDNet+Att	0.469	0.928	199	0.128
RT-MDNet+Att+Def	0.531	0.494	106	0.225
RT-MDNet+Def	0.540	0.168	36	0.374

Demos for adversarial attack and defense

DaSiamRPN

RT-MDNet

Ground Truth

Videos from OTB100 dataset

Demos for adversarial defense on clean sequences

Videos from OTB100 dataset

01 Introduction

Outline

02 Robust Tracking against White-Box Attacks

03 Robust Tracking against Black-Box Attacks

04 Conclusions

Black-box Generation and Defense

IoU attack aims to identify one specific noise perturbation leading to the lowest IoU score among the same amount of noise levels.

Black-box Generation and Defense

• We generate noise hypothesis tangentially according to the current contour line (i.e., #1) and increase the same amount of noise in the normal direction (i.e., #2)

Black-Box Adversarial Example Generation (IoU Attack)

```
Algorithm 1: Black-box Adversarial Example Generation
   Input: input video V with M frames; target bbx S^1 on the first frame;
             one tracker;
   Output: adversarial examples of M frames;
 1 for t = 2 to M do
        Get current frame I;
 \mathbf{2}
       if t \neq 2 then
 3
           I = I + P^{t-1};
 \mathbf{4}
       end
 \mathbf{5}
        Use the tracker to predict bbx B_0 based on I;
                                                                                     d(I_0, I_k) = d(I_0, I_k + \eta)
 6
       for k = 0 to K - 1 do
 7
           // Tangential direction
            Generate N random perturbations \eta and select n of them
 8
            according to eq. 1;
           for j = 1 to n do
 9
               // Normal direction and orthogonal composition
                                                                                      I_{k+1}^j = (I_k + \eta^j) + \epsilon \cdot d(H, I_k + \eta^j)
                Generate I_i^{k+1} according to eq. 2;
10
                Use the tracker to predict bbx B_j based on I_j^{k+1};
\mathbf{11}
                Compute IoU_i based on B_0 and B_i;
\mathbf{12}
           end
\mathbf{13}
            Identify j whose IoU<sub>i</sub> is lowest;
\mathbf{14}
            Compute learned perturbations P^t = I_i^{k+1} - I;
\mathbf{15}
       \mathbf{end}
\mathbf{16}
       return I_i^{k+1};
\mathbf{17}
18 end
```


IoU defense

mean filter

median filter

bilateral filter

non-local mean filter

- We subtract the defense perturbations from last frame as initialization when defending the current frame.
- We use four image filters and choose the highest IoU score one by comparing it to the bbx from the last frame.

上海交通大学 SHANGHAI JIAO TONG UNIVERSITY

Results of SiamRPN++ on OTB100 dataset

Results of RT-MDNet on OTB100 dataset

Results of ECO-HC on OTB100 dataset

Results on VOT2018 dataset

8

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	EAO \uparrow
RT-MDNet	0.533	0.567	121	0.176
RT-MDNet+RandAtt	0.528	1.105	236	0.116
RT-MDNet+Att	0.493	1.765	377	0.071
$\operatorname{RT-MDNet}+\operatorname{Att}+\operatorname{Def}$	0.439	1.447	309	0.101

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	EAO \uparrow
ECO-HC	0.496	0.557	119	0.189
ECO-HC++RandAtt	0.501	0.777	166	0.160
ECO-HC++Att	0.504	1.077	230	0.124
ECO-HC++Att+Def	0.490	0.866	185	0.150

Demos for adversarial attack and defense

Videos from OTB100 dataset

Conclusions

- The performance of deep trackers degrades rapidly under attacks
- White-box attacks are more aggressive than black-box attacks
- Learning deep trackers with defense schemes can improve the tracking robustness

Contributors

贾率 博士生 上海交通大学

宋奕兵 腾讯Al Lab

杨小康 教授 上海交通大学

NCI G 2020 第二十届全国图象图形学学术会议 The 20th National Conference on Image and Graphics

