

鲁棒视觉目标跟踪的深度攻击问题研究

Research interests: computer vision

Motion and Tracking

CVPR15 (IJCV18), ICCV15 (TPAMI20), ICCV17, CVPR18, ECCV18, NeurIPS18, CVPR19, CVPR19, CVPR19, CVPR19, ECCV20, CVPR 21, ICCV21 Q: What is the dark green vegetable? A: Cucumber

Vision and Language CVPR18, ECCV20

Image Restoration

ECCV14, CVIU17, ECCV20

3D Reconstruction

CVPR20 Workshop Best Paper

Visual Object Tracking and Applications

Intelligent Surveillance

Autonomous Driving

Medical Imaging

Human-Computer Interaction

Images from Google Search

Representation Learning for Tracking

Cross-Modality Tracking

Robust Object Tracking

- Adversarial examples are inputs to machine learning models that an attacker intentionally designed to cause the model to make mistakes.
- Threat model defines the rules of the attack.

[1] Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. In: ICLR (2015)

Attack:

- Targeted Attack / Non-targeted Attack;
- Digital attack / physical attack;
- Single-step attack / iterative attack;

- White-box attack: The adversary has access to all the information of the target neural network.
- Black-box attack: The inner configuration of DNN models is unavailable to adversaries.
- Transfer-based, Score-based and Decision-based attacks.

Defense:

Gradient Masking, Robust Optimization and Adversary Detection.

• 视觉跟踪算法白盒攻击 (ECCV 2020)

• 目标跟踪算法黑盒攻击 (CVPR 2021)

Introduction

DaSiamRPN — RT-MDNet — Ground Truth

Adversarial examples for attack and defend on the *David3* sequence from OTB2015 dataset

Our Motivations

Variations of adversarial perturbations during attack and defense.

Baseline Tracker 1: DaSiamRPN

 DaSiamRPN is a end-to-end trained off-line tracker, consisting of Siamese subnetwork for feature extraction and region proposal subnetwork including the classification branch and regression branch.

[1] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: ECCV (2018)

Baseline Tracker 2: RT-MDNet

 RT-MDNet is composed of shared layers and multiple branches of domainspecific layers. When tracking a target in a new sequence, it combines the shared with a new binary classification layer, which is updated online.

[1] Jung, I., Son, J., Baek, M., Han, B.: Real-time mdnet. In: ECCV (2018)

Our Method: Adversarial Example Generation

		Temporal attack
Al	gorithm 1: Adversarial Example Generation	$T^{t} = T^{t} + (T^{t-1} - T^{t-1})$
I	nput: input video V with T frames;	$I_1 = I_1 + (I_M - I_1)$
	target location S^1 ;	
C	Dutput: adversarial examples of T frames;	$x^{\star} - x + \delta x$
1 fe	$\mathbf{pr} \ t = 2 \ \mathbf{to} \ T \ \mathbf{do}$	$x_r = x_r + o_{\text{offset}}$
2	Get current frame I_1^t ;	$y_r^{\star} = y_r + \delta_{\text{offset}}$
3	if $t \neq 2$ then	$w_{\pi}^{\star} = w_{\pi} \star \delta_{\text{scale}}$
4	Update I_1^t via Eq. 6;	
5	end	$h_r^{\uparrow} = h_r * \delta_{\text{scale}}$
6	for $m = 1$ to M do	
7	Create p_c and p_r via IoU ratios between	
	proposals and target location S^{t-1} ;	N
8	Create p_c^{\star} by reversing elements of p_c ;	$\mathcal{L}_{adv}(I, N, \theta) = \sum \{ [L_c(I_n, p_c, \theta) - L_c(I_n, p_c^{\star}, \theta)] $
9	Create p_r^{\star} via Eq. 3;	n=1
10	Generate adversarial loss via Eq. 2;	$+ \lambda \cdot [L_r(I_n, p_r, \theta) - L_r(I_n, p_r^{\star}, \theta)]\}$
11	Update I_m^t via Eq. 5;	
12	end	
13	return I_M^t ;	$I_{m+1} = I_m + \alpha \cdot sign(r_m)$
14 e	nd	$-m+1$ $-m$ $+\infty$ -5.5

Our Method: Adversarial Example Defense

		Temporal defense
Al	Igorithm 2: Adversarial Example Defense	$\mathbf{r}t$ $\mathbf{r}t$ $(\mathbf{r}t-1)$ $\mathbf{r}t-1$
I	Input: input video V with T adversarial examples;	$I_{1}^{i} = I_{1}^{i} - \gamma \cdot (I_{1}^{i-1} - I_{M}^{i-1})$
	target location S^1 ;	
(Output: adversarial examples of T frames;	
1 f	for $t = 2$ to T do	$x_r^{\star} = x_r + \delta_{\text{offset}}$
2	Get current frame I_1^t ;	$y_r^{\star} = y_r + \delta_{\text{offset}}$
3	if $t \neq 2$ then	
4	Update I_1^t via Eq. 8;	$w_r = w_r * o_{\text{scale}}$
5	end	$h_r^{\star} = h_r * \delta_{\text{scale}}$
6	for $m = 1$ to M do	
7	Create p_c and p_r via IoU ratios between	
	proposals and target location S^{t-1} ;	N
8	Create p_c^{\star} by reversing elements of p_c ;	$\mathcal{L}_{adv}(I, N, \theta) = \sum \{ [L_c(I_n, p_c, \theta) - L_c(I_n, p_c^{\star}, \theta)] $
9	Create p_r^{\star} via Eq. 3;	n=1
10	Generate adversarial loss via Eq. 2;	$+ \lambda \cdot [L_r(I_n, p_r, \theta) - L_r(I_n, p_r^{\star}, \theta)] \}$
11	Update I_m^t via Eq. 7;	
12	end	
13	return I_M^t ;	$I = I + \alpha - \alpha i a m(m)$
14 e	end	$I_{m+1} = I_m + \alpha \cdot sign(T_m)$

Experimental Results: Ablation Study

Ablation studies of DaSiamRPN on the OTB100 dataset. We denote Cls as the attack on the classification branch, Reg as the attack on the regression branch where there are offset and scale attacks.

Ablation studies on temporal consistency of DaSiamRPN on the OTB-2015 dataset. Temporal denotes using temporal consistency in adversarial attack

Experiments

Evaluations on the UAV123 dataset.

Evaluations on the OTB100 dataset.

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	$EAO \uparrow$
DaSiamRPN	0.585	0.272	58	0.380
DaSiamRPN+RandAtt	0.571	0.529	113	0.223
DaSiamRPN+Att	0.536	1.447	309	0.097
DaSiamRPN+Att+Def	0.579	0.674	144	0.195
DaSiamRPN+Def	0.584	0.253	54	0.384

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	$EAO \uparrow$
RT-MDNet	0.533	0.567	121	0.176
RT-MDNet+RandAtt	0.503	0.871	186	0.137
RT-MDNet+Att	0.475	1.611	344	0.076
RT-MDNet+Att+Def	0.515	1.021	218	0.110
RT-MDNet+Def	0.529	0.538	115	0.179

Evaluations on the VOT2018 dataset.

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	$\text{EAO} \uparrow$
DaSiamRPN	0.625	0.224	48	0.439
DaSiamRPN+RandAtt	0.606	0.303	65	0.336
DaSiamRPN+Att	0.521	1.613	350	0.078
DaSiamRPN+Att+Def	0.581	0.722	155	0.211
DaSiamRPN+Def	0.622	0.214	46	0.418

	Accuracy \uparrow	Robustness \downarrow	Failures \downarrow	EAO ↑
RT-MDNet	0.567	0.196	42	0.370
RT-MDNet+RandAtt	0.550	0.452	97	0.235
RT-MDNet+Att	0.469	0.928	199	0.128
RT-MDNet+Att+Def	0.531	0.494	106	0.225
RT-MDNet+Def	0.540	0.168	36	0.374

Evaluations on the VOT2016 dataset.

Demos for adversarial attack and defense

DaSiamRPN

RT-MDNet

Ground Truth

Videos from OTB100 dataset

Demos for adversarial defense on clean sequences ② 人工智能研究院

Videos from OTB100 dataset

• 视觉跟踪算法白盒攻击 (ECCV 2020)

• 目标跟踪算法黑盒攻击 (CVPR 2021)

 IoU attack aims to identify one specific noise perturbation leading to the lowest IoU score among the same amount of noise levels.

Method

An intuitive view of IoU attack in the image space

★ heavy noise image

☆ original image

CVPR 2021: IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking

SiamRPN++ (Detection based, offline)

 SiamRPN++ is a end-to-end trained off-line tracker, consisting of Siamese subnetwork for feature extraction and region proposal subnetwork including the classification branch and regression branch.

[1] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. Siamrpn++: Evolution of siamese visual tracking with very deep networks. In CVPR, 2019.

DiMP (Correlation filter based, online)

 DiMP exploits both target and background appearance information to locate the target by learning the discriminative target model during offline training and updating the optimization with only a few iterations.

[1] Bhat, G., Danelljan, M., Gool, L. V., Timofte, R. Learning discriminative model prediction for tracking. In: ICCV (2019)

LTMU (Long-term tracker)

 LTMU is specifically designed for long-term tracking and consists of a local tracker, an online verifier, a SiamRPN-based re-detector, and a metaupdater. The meta-updater learns to guide the tracker update properly.

[1] Dai, K., Zhang, Y., Wang, D., Li, J., Lu, H., Yang, X. High-performance long-term tracking with meta-updater. In: CVPR (2020).

Tracker	Stomporal	P_{t-1}	EAO ↑			
	~ temporar	1 1-1	VOT2018	VOT2016		
	No	Yes	0.149	0.189		
SiamRPN++	Yes	No	0.134	0.190		
	Yes	Yes	0.129	0.183		
	No	Yes	0.257	0.275		
DiMP	Yes	No	0.261	0.295		
	Yes	Yes	0.248	0.256		
	No	Yes	0.147	0.184		
LTMU	Yes	No	0.150	0.189		
	Yes	Yes	0.120	0.170		

- *S*_{temporal} represents the temporal IoU score;
- P_{t-1} represents the learned perturbation from historical frames;

Trackers	Accuracy ↑		Robustness ↓		Failures ↓			EAO ↑				
muchers	Orig.	Rand.	Attack	Orig.	Rand.	Attack	Orig.	Rand.	Attack	Orig.	Rand.	Attack
SiamRPN++	0.596	0.591	0.575	0.472	0.727	1.575	94	145	314	0.287	0.220	0.124
DiMP	0.568	0.567	0.474	0.277	0.373	0.641	55	74	127	0.332	0.284	0.195
LTMU	0.625	0.623	0.576	0.913	1.073	1.470	182	214	293	0.201	0.175	0.150

Results on the VOT2019 dataset.

Trackers	Accuracy ↑		Robustness \downarrow		Failures \downarrow			$EAO \uparrow$				
	Orig.	Rand.	Attack	Orig.	Rand.	Attack	Orig.	Rand.	Attack	Orig.	Rand.	Attack
SiamRPN++	0.602	0.587	0.568	0.239	0.365	1.171	51	78	250	0.413	0.301	0.129
DiMP	0.574	0.560	0.507	0.145	0.202	0.400	31	43	85	0.427	0.363	0.248
LTMU	0.624	0.622	0.590	0.702	0.805	1.320	150	172	282	0.195	0.178	0.120

Results on the VOT2018 dataset.

Trackers	Accuracy ↑		Robustness ↓		Failures ↓			EAO ↑				
Truchers	Orig.	Rand.	Attack	Orig.	Rand.	Attack	Orig.	Rand.	Attack	Orig.	Rand.	Attack
SiamRPN++	0.643	0.632	0.605	0.200	0.340	0.802	43	73	172	0.461	0.331	0.183
DiMP	0.599	0.592	0.536	0.140	0.168	0.374	30	36	80	0.449	0.404	0.256
LTMU	0.661	0.646	0.604	0.522	0.592	0.904	112	127	194	0.236	0.233	0.170

Results on the VOT2016 dataset.

Trackers		Success	\uparrow	Precision ↑			
	Orig.	Rand.	Attack	Orig.	Rand.	Attack	
SiamRPN++	0.695	0.631	0.499	0.905	0.818	0.644	
DiMP	0.671	0.659	0.592	0.869	0.860	0.791	
LTMU	0.672	0.622	0.517	0.872	0.815	0.712	

Results on the OTB100 dataset.

Trackers		Success	\uparrow	Precision ↑			
11 uono15	Orig.	Rand.	Attack	Orig.	Rand.	Attack	
SiamRPN++ DiMP LTMU	0.509 0.614 0.631	0.466 0.591 0.579	0.394 0.545 0.462	0.601 0.729 0.764	0.550 0.710 0.699	0.446 0.658 0.559	

Results on the NFS30 dataset.

Experiments

Results on the VOT2018-LT dataset.

DiMP

LTMU

From the NFS30 dataset

- The performance of deep trackers degrades rapidly under attacks.
- White-box attacks are more aggressive than black-box attacks.
- Learning deep trackers with defense schemes can improve the tracking robustness.

Thanks!

ECCV 2020: https://github.com/VISION-SJTU/RTAA

CVPR 2021: https://github.com/VISION-SJTU/IoUattack

