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Abstract. Visual Question Answering (VQA) has achieved great suc-
cess thanks to the fast development of deep neural networks (DNN). On
the other hand, the data augmentation, as one of the major tricks for
DNN, has been widely used in many computer vision tasks. However,
there are few works studying the data augmentation problem for VQA
and none of the existing image based augmentation schemes (such as
rotation and flipping) can be directly applied to VQA due to its seman-
tic structure – an 〈image, question, answer〉 triplet needs to be main-
tained correctly. For example, a direction related Question-Answer (QA)
pair may not be true if the associated image is rotated or flipped. In
this paper, instead of directly manipulating images and questions, we
use generated adversarial examples for both images and questions as
the augmented data. The augmented examples do not change the visual
properties presented in the image as well as the semantic meaning of
the question, the correctness of the 〈image, question, answer〉 is thus
still maintained. We then use adversarial learning to train a classic VQA
model (BUTD) with our augmented data. We find that we not only
improve the overall performance on VQAv2, but also can withstand ad-
versarial attack effectively, compared to the baseline model. The source
code is available at https://github.com/zaynmi/seada-vqa.
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1 Introduction

Both computer vision and natural language processing (NLP) have made enor-
mous progress on many problems using deep learning in recent years. Visual
question answering (VQA) is a field of study that fuses computer vision and
NLP to achieve these successes. The VQA algorithm aims to predict a correct
answer to the given question referring to an image. The recent benchmark study
[17] demonstrates that the performance of VQA algorithms hinges on the amount
of training data. Existing algorithms can always benefit greatly from more train-
ing data. This suggests that data augmentation without manual annotations is
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an intuitive attempt to improve the VQA performance, just like its success on
the other deep learning applications.

Existing Data augmentation approaches enlarge the training dataset size by
either data warping or oversampling [37]. Data warping transforms data and
keeps their labels. Typical examples include geometric and color transforma-
tions, random erasing, adversarial training, and neural style transfer. Oversam-
pling generates synthetic instances and adds them to the training set. Data
augmentation has shown to be effective in alleviating the overfitting problem of
DNNs [37]. However, data augmentation in VQA is barely studied due to the
challenge of maintaining an 〈image, question, answer〉 triplet semantically cor-
rect. Neither geometric transform nor randomly erasing the image could preserve
the answer. For example, when asking about What is the position of the com-
puter?, Is the car to the left or right of the trash can?, flipping or rotating images
results in the opposite answers. Randomly erasing the image associated with the
question How many ...? would miss the number of objects. Such transforms need
tailored answers which are unavailable. On the textual side, it is challenging to
come up with generalized rules for language transformation. Universal data aug-
mentation techniques in NLP have not been thoroughly explored. Therefore, it
is non-trivial to explore the data augmentation technique to facilitate VQA.

Previous works have generated reasonable questions based on the image con-
tent [16] and the given answer [25], namely Visual Question Generation (VQG).
However, a significant portion of the generated questions either have grammat-
ical errors or are oddly phrased. In addition, they learn from the questions and
images in the same target dataset, thus the generated data are drawn from the
same distribution of the original data. Since the training and test data usually
do not share the same distribution, the generated data could not help to relieve
the overfitting.

In this paper, we propose to generate semantic equivalent adversarial exam-
ples of both visual and textual data as augmented data. Adversarial examples
are strategically modified samples that could successfully fool the deep mod-
els to make incorrect predictions. However, the modification is imperceptible
that keeps the semantics of data while driving the underlying distribution of
adversarial examples away from that of the original data [41]. In our method,
visual adversarial examples are generated by an un-targeted gradient-based at-
tacker [24], and textual adversarial examples are paraphrases that could fool the
VQA model (predicting a wrong answer) while keeping the questions seman-
tically equivalent. The existence of adversarial examples not only reveals the
limited generalization ability of ConvNets, but also poses security threats on the
real-world deployment of these models.

We adversarially train the strong baseline method Bottom-Up-Attention and
Top-Down (BUTD) [2] on VQAv2 dataset [13] with clean examples and adversar-
ial examples generated on-the-fly. We regard the adversarial training as a regu-
larizer acting in a period of training time. Experimental results demonstrate that
our proposed adversarial training framework not only better boosts the model
performance on clean examples than other data augmentation techniques, but
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also improves the model robustness against adversarial attacks. Although there
are few works studying the data augmentation problem for VQA [18,35,33,1],
they merely generate either new questions or images. To our best knowledge,
our work is the first to augment both visual and textual data in VQA.

To summarize, our major contributions are threefold:

– We propose to generate visual and textual adversarial examples to augment
the VQA dataset. Our generated data preserve the semantics and explore
the learned decision boundary to help improve the model generalization.

– We propose an adversarial training scheme that enables VQA models to take
advantage of the regularization power of adversarial examples.

– We show that the model trained with our method achieves 65.16% accuracy
on the clean validation set, beating its vanilla training counterpart by 1.84%.
Moreover, the adversarially trained model significantly increases accuracy on
adversarial examples by 21.55%.

2 Related Work

VQA. A large number of VQA algorithms have been proposed, including spa-
tial attention [2,44,26,6], compositional approaches [4,3,14], and bilinear pooling
schemes [10,20]. Spatial attention [2] is one of the most widely used methods for
both natural and synthetic image VQA. A large portion of prior arts [19,46,29,31]
are built upon the bottom-up top-down (BUTD) attention method [2]. We also
choose the BUTD as our baseline VQA model. Instead of developing a more so-
phisticated answering machine, we propose a VQA data augmentation technique
that can potentially benefit existing VQA methods since data is the fuel.

Data Augmentation. Compared to vision, a few efforts have been done on
augmenting text for classification problems. Wei et al. [40] make a comprehensive
extension for text editing techniques on NLP data augmentation and achieve
gains on text classification. However, our study shows that it could degrade
the model performance on the VQA task (see Section 4). Other works generate
paraphrases [45,28] and add noise to smooth text data [42]. There are fewer
works [18,33,35,1,30] that learn data augmentation for VQA. Kafle et al.[18] do
a pioneer work where they generate new questions by using semantic annotations
on images. Work of [33] automatically generates entailed questions for a source
QA pair , but it uses additional data in Visual Genome [22] to add diversity
to the generated questions. Work of [35] proposes a cyclic-consistent training
scheme where it generates different rephrasings of question and train the model
such that the predicted answers across the generated and original questions
remain consistent. The method [1] employ a GAN-based re-synthesis technique
to automatically remove objects to strengthen the model robustness against
semantic visual variations. Note that all of these methods augment data in a
single modality (text-only or image-only) and heavily rely on complex modules
to achieve slight performance gains.
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Fig. 1. Framework of the proposed data augmentation method. We generate adversarial
examples of both visual and textual data as augmented data, which are passed through
the VQA model to obtain incorrect answers. The augmented and original data are
jointly trained using the proposed adversarial training scheme, which can boost model
performance on clean data while improving model robustness against attack.

Adversarial Attack and Defense. In recent years, research works [38,12]
add imperceptible perturbations to input images, named adversarial examples,
to evaluate the robustness of deep neural networks against such perturbation
attacks. In the NLP community, state-of-the-art textual DNN attackers [5,7,9]
use a different approach from those in the visual community to generate textual
adversarial examples. Our work is inspired by SCPNs [15] and SEA [34] which
generate paraphrases of the sentence as textual adversarial examples. Mean-
while, previous works [12] show that training with adversarial examples can im-
prove the model generalization on small dataset (e.g., MNIST), but degrade the
performance on large datasets (e.g., ImageNet), in the fully-supervised setting.
Recent notable work [41] suggests that adversarial training could boost model
performance even on ImageNet with a well-designed training scheme. A num-
ber of methods [36,43] have investigated adversarial attack on the VQA task.
However, they merely attack the image and do not discuss how the adversarial
examples can benefit the VQA model. To summarize, how adversarial examples
can facilitate VQA remains an open problem. This work sheds light on utilizing
adversarial examples as augmented data for VQA.

3 Method

We now introduce our data augmentation method to train a robust VQA model.
As illustrated in Fig. 1, given an 〈image, question, answer〉 triplet, we first gen-
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erate the paraphrases of questions and store them, then, generate visual adver-
sarial examples on-the-fly to obtain semantically equivalent additional training
triplets, which are used in the proposed adversarial training scheme. We describe
them in detail as follows.

3.1 VQA Model

Answering questions about images can be formulated as the problem of predict-
ing an answer a given an image v and a question q according to a parametric
probability measure:

â = arg max
a∈A

p(a|v, q; θ) (1)

where θ represents a vector of all parameters to learn and A is a set of all
answers. VQA requires solving several tasks at once involving both visual and
textual inputs. Here we use Bottom-Up-Attention and Top-Down (BUTD) [2]
as our backbone model because it has become a golden baseline in VQA. In
BUTD, region-specific image features extracted by fine-tuned Faster R-CNN
[11] are utilized as visual inputs. In this paper, let v = {−→v1,−→v2 , ...,−→vK} be a
collection of visual features extracted from K image regions and the question is
a sequence of words q = {q1, q2, ..., qn}. The 〈image, question, answer〉 triplet
has a strong semantic relation that neither image nor question can be easily
transformed to augment the training data while preserving original content.

3.2 Data Augmentation

Due to the risk of affecting answers, we avoid manipulating the raw inputs (i.e.,
images and questions) directly, such as cropping the image or changing the word
order. Inspired by the adversarial attack and defense, we propose to generate
adversarial examples as additional training data. In this section, we present how
to generate adversarial examples of images and questions while preserving the
original labels and how to use them to augment the training data.

Visual Adversarial Examples Generation. Adversarial attacks are origi-
nated from the computer vision community. In general, the overarching goal is
to add the least amount of perturbation to the input data to cause the desired
misclassification. We employ an efficient gradient-based attacker Iterative Fast
Gradient Sign Method (IFGSM)[23] to generate visual adversarial examples. Be-
fore illustrating IFGSM, we firstly introduce FGSM, as IFGSM is an extension
of it. Goodfellow et al.[12] proposed the FGSM as a simple way to generate
adversarial examples. We could apply it on visual input as:

vadv = v + ε sign(∇vL(θ, v, q, atrue)) (2)

where vadv is the adversarial example of v, θ is the set of model parameters,
L(θ, v, q, atrue) denotes the cost function used to train the VQA model, ε is the
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size of the adversarial perturbation. The attacker backpropagates the gradient to
the input visual feature to calculate ∇vL(θ, v, q, atrue) while fixing the network
parameters. Then, it adjusts the input by a small step in the direction (i.e.
sign(∇vL(θ, v, q, atrue))) that maximize the loss. The resulting perturbed, vadv,
is then misclassified by the VQA model (e.g., the model predicts Double in Fig.
1).

A straightforward extension of FGSM is to apply it multiple times with small
step size, referred to IFGSM as:

v0adv = v, vN+1
adv = Clipv,ε

{
vNadv + α sign(∇vL(θ, vNadv, q, atrue))

}
(3)

where Clipv,ε(A) denotes element-wise clipping A, with Ai,j clipped to the range
[vi,j − ε, vi,j + ε], α is step size in each iteration. In this paper, we summarize
gradient-based method as VAdvGen(v, q).

One-step methods of adversarial example generation generate a candidate
adversarial image after computing only one gradient. Iterative methods apply
many gradient updates. They typically do not rely on any approximation of the
model and typically produce more harmful adversarial examples when running
for more iterations. Our experimental results show that the accuracy of the
BUTD vanilla trained model on visual adversarial examples generated by IFGSM
is about 17%−30% for ε ∈ [0.3, 1.3]. It implies that adversarial examples have
different distribution to normal examples.

Semantic Equivalent Questions Generation. To generate adversarial ex-
ample qadv of a question, we cannot directly apply approaches from image DNN
attackers since textual data is discrete. In addition, the perturbation size that
measured by Lp norm in image is also inapplicable for textual data. Moreover,
the small changes in texts, e.g., character or word change, would easily destroy
the grammar and semantics, rendering the possibility of attack failure. Adhere
to the principle of not changing the semantics of input data, inspired by [15,28],
we generate semantically equivalent adversarial questions by using a sequence-
to-sequence paraphrasing model.

Here we use a paraphrasing model [28] based purely on neural networks
and it is an extension of the basic encoder-decoder Neural Machine Transla-
tion (NMT) framework. In the neural encoder-decoder framework, the encoder
(RNN) is used to compress the meaning of the source sentence into a sequence
of vectors. The decoder, a conditional RNN language model, generates a target
sentence word-by-word. The encoder takes a sequence of original question words
X = {x1, ..., xTx} as inputs, and produces a sequence of context. The decoder
produces, given the source sentence, a probability distribution over the target
sentence Y =

{
y1, ..., yTy

}
with a softmax function:

P (Y |X) =

Ty∏
t=1

P (yt|y<t, X) (4)
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However, in the case of paraphrasing, there is not a path from English to
English, but a path from English to a pivot language to English can be used.
For example, the source English sentence E1, is translated into a single French
sentence F . Next, F is translated back into English, giving a probability distri-
bution over English sentences, E2, which acts as paraphrase distribution:

P (E2|E1, F ) = P (E2|F ) (5)

Our paraphrasing model pivots through the set of K-best translations F =
{F1, ..., FK} of E1. This ensures that multiple aspects (semantic and syntactic)
of the source sentence are captured. Translating multiple pivot sentences into one
sentence producing a probability distribution over the target vocabulary could
be formed as:

P (yt = w|y<t,F) =

K∑
i=1

P (Fi|E1) · P (yt = w|y<t,Fi) (6)

We further expand on the multi-pivot approach by pivoting over multiple
sentences in multiple languages (e.g., French and Portuguese). Deriving from
Eq. 6, we obtain P (yt = w|y<t,FFr) and P (yt = w|y<t,FPo). Then averaging
these two distributions, producing a multi-sentence, multi-lingual paraphrase
probability:

P (yt = w|y<t,FFr,FPo) =
1

2
(P (yt = w|y<t,FFr) + P (yt = w|y<t,FPo)) (7)

which is used to obtain the probability distributions over sentences:

P (E2|E1) =

TE2∏
t=1

P (yt|y<t,FFr,FPo) (8)

We employ the pre-trained NMT model3 which is trained for English↔Portu-
guese and English↔French to generate paraphrase candidates. A score [34] that
measures the semantic similarity between paraphrase and its original text is
defined as:

S(q, q′) = min

(
1,
P (q′|q)
P (q|q)

)
(9)

where P (q′|q) is the probability of a paraphrase q′ given original question q
defined in Eq. 8, P (q|q), which approximates how difficult it is to recover q,
is used to normalize different distributions. We penalize those candidates with
edit distance more than e or unknown words by adding a large negative number
λ to the similarity score. We select the paraphrase candidates with the top-k
semantic scores as our qadv. The generation algorithm of qadv is denoted qadv =
QAdvGen(q).

3 https://github.com/OpenNMT/OpenNMT-py

https://github.com/OpenNMT/OpenNMT-py
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• Where would one go to find lotion and beauty products ? (store) 
• Ground truth: store
(0.119) Where would anyone go to find lotion and beauty products? (no)
(0.025) Where would you go to find lotion and beauty products? (nowhere)
(0.019) Where will anyone go to find lotion and beauty products? (no）
(0.018) Where will you go to find lotion and beauty products? (nowhere)
(0.012) Where are you going to find lotion and beauty products? (none)

• What kind of container are the bananas sitting in ? (basket) 
• Ground truth: bowl
(0.027) What kind of container is the bananas sitting? (bowl)
(0.013) What type of container are bananas sitting? (bowl)
(0.008) What kind of container are bananas seated? (bowl)
(0.007) What sort of container are bananas sitting? (bowl)
(0.006) What type of container is the bananas sitting? (bowl)

Fig. 2. Examples of our generated qadv. The first question in bold in each block is the
original question. The words in brackets are model predictions of the corresponding
question; the numbers in brackets are the semantic score of qadv.

Our paraphrases edit at least words to maintain syntax and semantics rather
than exploring the linguistic variations regardless of the possibility of being
perceived. We illustrate two examples of our qadv in Fig. 2. They show that
generated paraphrases could easily “break” the BUTD model. A predicted label
is considered “flipped” if it differs from the prediction on the corresponding
original question (assume that we do not attack visual data in this part). We
observe that qadv not only flip from positive predictions to negative ones but also
correct the negative predictions to positive ones in some cases. Surprisingly, the
flip rate of the vanilla trained model is 36.72% causing an absolute accuracy drop
of 10%. It suggests that there is brittleness in the model decision and indicates
that the model exploits spurious correlations while making its predictions.

3.3 Adversarial Training with Augmented Examples

Considering the adversarial training framework [24,41], we treat adversarial ex-
amples as additional training samples and train networks with a mixture of
adversarial and clean examples. The augmented questions are model-agnostic
and generated before training, while visual adversarial examples are continually
generated at every step of training. There are two kinds of visual adversarial
examples depending on the question inputs:

vqc = VAdvGen(v, q), vqadv = VAdvGen(v, qadv) (10)

For each (v, q) pair, we have 4 additional training pairs, (vqc, q), (vqadv, q),
(vqc, qadv) and (vqadv, qadv). All these four pairs are semantically equivalent,
which means they hold the same ground truth answer. We maintain the original
〈image, question, answer〉 triplet but augment the original example at least four
times, in the case of only one qadv generated. We formulate a loss function that
allows control of the relative weight of additional pairs in each batch:

Loss = L(θ, v, q, atrue) + w
(
L(θ, vqc, q, atrue) + L(θ, vqadv, q, atrue)

+ L(θ, vqc, qadv, atrue) + L(θ, vqadv, qadv, atrue)
)

(11)
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Algorithm 1: Pseudo code of our adversarial training

Input: A set of clean visual and textual examples v, q with answers a
Output: Network parameter θ

1 qadv = QAdvGen(q);
2 for each training step i do
3 Sample a mini-batch of clean visual examples vb, clean textual

examples qb, textual adversarial examples qbadv and answer ab;
4 if i is in adversarial training period time then
5 Generating the corresponding mini-batch of additional training

pairs (vbqc, q
b), (vbqadv, q

b), (vbqc, q
b
adv) and (vbqadv, q

b
adv);

6 Minimize the loss in Eq. 11 w.r.t. network parameter θ

7 else
8 Minimize the loss L(θ, vb, qb, ab) w.r.t. network parameter θ
9 end

10 end
11 return θ

where L(θ, v, q, atrue) is a loss on a batch of v and q examples with true answer
atrue, w is a parameter which controls the relative weight of adversarial examples
in the loss. Our main goal is to improve network performance on clean images by
leveraging the regularization power of adversarial examples. We empirically find
that training with a mixture of adversarial and clean examples from beginning
to end would not converge well on clean samples. Therefore, we mix them in
a period of training time and fine-tune with clean examples in the rest epochs.
Not only does this boost the performance on clean examples, but also improves
the robustness of the model to adversarial examples. We present our adversarial
training scheme in Algorithm 1.

4 Experiments

4.1 Experiments Setup

Dataset. We conduct experiments on the VQAv2 [13], which is improved from
the previous version to emphasize visual understanding by reducing the answer
bias in the dataset. VQAv2 contains 443K train, 214K validation and 453K test
examples. The annotations for the test set are unavailable except for the remote
evaluation servers. We provide our results on both validation and test set, and
perform ablation study on the validation set.

VQA Architectures. We use a strong baseline Bottom-Up-Attention and
Top-Down (BUTD) [2] which combines a bottom-up and a top-down atten-
tion mechanism to perform VQA, with the bottom-up mechanism generating
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object proposals from Faster R-CNN [11], and the top-down mechanism predict-
ing an attention distribution over those proposals. Following setting in [2,39], we
use a maximum of 100 object proposals per image, which are 2048 dimensional
features, as visual input. We represent question words as 300 dimensional em-
beddings initialized with pre-trained GloVe vectors [32], and process them with
a one-layer GRU to obtain a 1024 dimensional question embedding.

Training Details. For fair comparison, we train the BUTD baseline and our
framework using Adamax [21] with a batch size of 256 on the training split for
a total of 25 epochs. Baseline achieves 63.32% accuracy on the validation set
and we save this checkpoint to evaluate the attackers in the following. We set
an initial learning rate of 0.001, and then decay it after five epochs at the rate
of 0.25 for every two epochs. We inject the additional data merely in a period of
epochs (start, end), where start is the epoch when we start adversarial training
and end is the epoch when we start standard training. We set the number of
iterations n of IFGSM to 2 and the number of generated paraphrases per question
to 1 for saving training time. In paraphrase generating, we set the edit distance
threshold e = 4 and penalization score λ = −10. To avoid label leaking effect
[24], we replace the true label in Eq. 2 and 3 with the most likely label predicted
by the model when adversarial training. Our best result is achieved by using
values ε = 0.3, α = 0.0625, w = 50. These hyperparameters are chosen based on
grid search, and other settings are tested in the ablation studies.

4.2 Results

Overall Performance. Table 1 shows the results on VQAv2 validation, test-
dev and test-std sets. We compare our method with the BUTD vanilla training
setting. Our method outperforms vanilla trained baseline, making gains of 1.82%,
2.55%, 2.6% on validation, test-dev and test-std set, respectively. Furthermore,
our training scheme only consumes a small amount of additional time (4 min for
an epoch) while allows for a considerable increase in standard accuracy.

Comparison with Other Data Augmentation Methods. We compare our
method with related VQA data augmentation method CC [35], and NLP data
augmentation method EDA [40] and report the results on VQAv2 in Table 1.
The model of CC is trained to predict the same answer for a question and its
rephrasing, which are generated by a VQG module in their training scheme.
Their outperforming validation accuracy is in contrast to the less competitive
accuracy on the test-dev set. It reveals CC is less capable of generalizing on
unseen data. EDA is a text editing technique boosting model performance on
the text classification task. We implement it to generate three augmented ques-
tions per original question and set the percent of words in a question that are
changed α = 0.1. However, results (see Table 1) show that EDA could degrade
the performance on clean data and make a 0.59% accuracy drop. It demonstrates
that text editing techniques for generating question are not applicable as large
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Table 1. Performance and ablation studies on VQAv2.0. All models listed here are
single model, which trained on the training set to report Val scores and trained on
training and validation sets to report Test-dev and Test-std scores. The first row rep-
resents the vanilla trained baseline model. The rows begin with + represents the data
augmentation method added to the first row. EDA-3 represents that we generate three
augmented questions per original questions using EDA [40]. † This method is imple-
mented based on a stronger BUTD (see [35]) and obtains a relatively small improvement
(0.48%) on validation score, even so, its test-dev score is surpassed by our method.

Method Val
Test-dev

Test-std
Overall Yes/no Number Others

BUTD [2] 63.32 65.23 81.82 44.21 56.05 65.67
+Noise 63.28 64.80 81.03 43.96 55.70 -
+EDA-3 [40] 62.73 - - - - -
+CC [35]† 65.53 67.55 - - - -
+Ours 65.16 67.78 84.08 47.55 58.48 68.27
+Ours w/o Aug-Q 65.05 67.58 83.85 47.34 58.31 -
+Ours w/o Aug-V 64.69 67.45 83.55 46.96 58.37 -

numbers of questions are too short that could not be allowed to insert, delete
or swap words. Moreover, sometimes the text editing may change the original
semantic meaning of the question, which leads to noisy and even incorrect data.

Since our augmented data might be regarded as injecting noise to original
data, we also set comparison by injecting random noise with a standard deviation
of 0.3 (same as our ε in reported results) to visual data. Random noise, as well,
could be regarded as a naive attacker that causes a 0.9% absolute accuracy drop
on the vanilla model. However, jointly training with clean and noising data could
not boost the performance on clean data, as reported in Table 1. It proves that
our generated data are drawn from the proper distribution that let the model
take full advantage of the regularization power of adversarial examples.

4.3 Analysis

Training Set Size Impact. Furthermore, we conduct experiments using a
fraction of the available data in the training set. As overfitting tends to be more
severe when training on smaller datasets, we show that our method has more
significant improvements for smaller training sets. We run both vanilla training
and our method for the following training set fractions (%): {20, 40, 60, 80}.
Performances are shown in Table 2. The best accuracy without augmentation,
63.32%, was achieved using 100% of the training data. Our method surpasses it
with 80% of the training data, achieving 64.27%.

Effect of Augmenting Time. We empirically find that the time when the
adversarial examples are injected into training has an effect on accuracy. We
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Table 2. Validation accuracy (%) across BUTD
with and without our framework on different train-
ing set sizes.

Training set size BUTD +Ours

80% 62.77 64.27 (+1.50)

60% 61.55 63.11 (+1.56)

40% 59.47 61.35 (+1.88)

20% 55.45 57.39 (+1.94)

Table 3. Validation accuracy
(%) of our method using differ-
ent adversarial training periods.

(start, end) Accuracy

(5,25) 63.93
(10,25) 64.08
(10,15) 65.16
(15,20) 64.18

demonstrate this via ablation studies in Table 3. We try several adversarial
training period (5, 25), (10, 25), (10, 15) (15, 20). They respectively evaluate the
effect of delaying injecting additional training data after different epochs and
prove the advantage gained from fine-tuning with clean data in the last few
epochs. Results show that (10, 15) is the optimal adversarial training period, and
it surpasses the baseline model and achieves 65.16% accuracy. One explanation
is that adversarial examples have different underlying distributions to normal
examples, and if boosting model performance on clean examples is our main
goal, it is inappropriate to inject the perturbed examples at an early stage where
the model has not warm up, and the fitting ability of model on clean examples
need to be retrieved at the end of the training process.

4.4 Ablation Studies

Augmentation Decomposed. Results from ablation studies to test the con-
tributions of our method’s components are given in Table 1. The augmentation
on visual and textual (question) data both make their individual contribution
to improve the accuracy. We observe that visual adversarial examples are crit-
ical to our performance, and removing it causes a 0.47% accuracy drop (see
Ours w/o Aug-V) on the validation set. The question augmentation also leads
to comparable improvements, see the model of Ours w/o Aug-V.

Ablation on Adversarial Attackers. We now ablate the effects of attacker
strength and type used in our method on network performance. To evaluate the
regularization power of adversarial examples, we first compute the accuracy of
the vanilla model after being attacked by the gradient-based attacker with a
variety of sets of parameters. Since the visual input ranges from 0 to 83, we try
perturbation size ε among {0.3, 0.5, 1, 1.3}, approximately following the ratio of
ε to pixel value in [41], and step size α among

{
1
16 ,

1
8 ,

1
4 ,

3
8 ,

1
2 , 1, 2

}
.

Fig. 3(b) reflects the attacker strength changes with different parameter set-
tings (accuracy declines implies strength increases) while Fig. 3(e) reflects how
the model performance changes with attacker strength. We observe that the ac-
curacy on clean data is inversely proportional to attacker strength. As weaker
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Fig. 3. Ablation on visual attacker strength and type. The top row is the accuracy
of the vanilla model on adversarial examples generated by FGSM, IFGSM, and PGD,
respectively. The bottom row is the standard accuracy of our model that adversarially
trained with the corresponding attacker. The number of iterations is fixed to 2.

attackers push the distribution of adversarial examples less away from the dis-
tribution of clean data, the model is better at bridging domain differences. How-
ever, the extremely weak attacker (e.g., random noise, α < 1

64 ) yields negligible
improvement on standard accuracy, since the generated data are drawn similar
distribution with original data.

We then study the effects of applying different gradient-based attackers in our
method on model performance. Specifically, we try two other attackers, FGSM
and PGD [27]. Their performances are reported in Fig. 3(a), 3(d), 3(c), 3(f).
We observe that all attackers substantially improve model performance over the
vanilla training baseline. This result suggests that our VQA data augmentation
method is not designed for a specific attacker.

4.5 Model Robustness

Improvement of model robustness against adversarial attacks is a reward of our
adversarial training scheme. As shown in Table 4, we are able to significantly
increase accuracy on visual adversarial examples by 13.74%, when using the
training attacker at test-time. Following [8], we test a stronger PGD attacker
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Table 4. Validation accuracy (%) of vanilla and adversarially trained (using IFGSM
ε = 0.3, α = 0.0625, n = 2) network on clean and adversarial examples with various
test-time attackers. Parap. represents the generated paraphrases in our method. Note
that the IFGSM and PGD still act as the white-box attacker when testing.

Clean IFGSM Parap. IFGSM & Parap. PGD

BUTD [2] 63.32 30.83 54.03 22.09 18.05
+Ours 65.16 44.57 63.18 43.64 22.64

(ε = 0.5, α = 0.125, n = 6) and our model could beat the baseline by 4.59%.
On the textual side, the accuracy of the vanilla model on qadv is 54.03% and
the flip rate (lower is better) is 36.72% while our adversarially trained model
obtained an accuracy of 63.18% and a flip rate of 18.8% on qadv. When attacking
both visual and textual sides in test-time, our model beats the vanilla model by
21.55%. These results indicate that our model is capable of defending against
both visual and textual common attackers.

4.6 Human Evaluation of Semantic Consistency

In order to show the semantic consistency of our generated paraphrases with
original questions, we conduct a human study. We sampled 100 questions and
their paraphrases with top1 semantic similarity score defined in Eq. 9, and asked
4 human evaluators to assign labels (e.g., positive for similar or negative for not
similar). We averaged the opinions of different evaluations for each query to get
a positive score of 84%. It demonstrates that the majority of paraphrases are
similar to the originals.

5 Conclusion

In this paper, we propose to generate visual and textual adversarial examples
as augmented data to train a robust VQA model with our adversarial training
scheme. The visual adversaries are generated by gradient-based adversarial at-
tacker and textual adversaries are paraphrases. Both of them keep modification
imperceptible and maintain the semantics. Experimental results show that our
method not only outperforms prior arts of VQA data augmentation, and also
improves model robustness against adversarial attacks. To the best of our knowl-
edge, this is the first work that uses both semantic equivalent visual and textual
adversaries as data augmentation for the visual question answering problem.
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