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In this supplementary material, we supplement more de-
tails for our proposed reconstruction-classification learning
(RECCE) framework. Concretely, Section 1 provides the
detailed implementation of our method. Section 2 presents
additional experiments to better demonstrate the superiority
of the proposed method, including more ablation studies,
generalization, and robustness evaluation. In Section 3, we
analyze the limitation of our method.

1. More Implementation Details
For the FaceForensics++ [11], Celeb-DF [7] and

DFDC [3] datasets, we use RetinaFace [2] to extract the face
region from video sequences and adopt a conservative crop
which enlarges the facial region by a factor of 1.3 around the
center of the tracked face. Then, we resize the aligned face
images to 299 × 299. For WildDeepfake [17] where facial
images are already cropped to 224 × 224, we use the orig-
inal setting as in [17]. We implement our method based on
Xception [1] structure. The decoder in the proposed recon-
struction network is built upon the fourth Xception Block.
We use the nearest up-sampling in the decoder to restore the
spatial size. For detailed implementation, please refer to our
source code. During training, we apply random horizontal
flipping as data augmentation. We use Adam [5] optimizer
with an initial learning rate of 2e-4 and a weight decay of
1e-5. A step learning rate scheduler is used to adjust the
learning rate. Following [12], we additionally use the loss
term in [4] with b = 0.04 to stabilize training of the pro-
posed method. Both our method and the re-implemented
approaches are based on PyTorch [9]. All the experiments
are conducted on 8 Nvidia GeForce 2080 Ti GPUs.

2. Additional Experiments
2.1. Ablation Study

Effect of the proposed constraints on generalization. We
focus on the common compact representations for genuine
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ID Lr Lm AUC (%) ↑ EER (%) ↓
(a) real & fake

√
56.40 46.15

(b) real – 58.62 43.34
RECCE real

√
59.86 42.61

Table 1. Effectiveness of the proposed constraints in our method
by training on WildDeepfake [17] and testing on FF++ [11].

ID Operator Multi-scale Acc (%) AUC (%)

(a) summation
√

81.51 90.35
(b) concatenation

√
82.62 90.81

(c) non-local [14]
√

83.06 90.95
(d) graph-based – 82.85 90.84

RECCE graph-based
√

83.25 92.02

Table 2. Effectiveness of the proposed graph-based operator and
multi-scale structure in multi-scale graph reasoning module on
WildDeepfake [17] dataset.

faces via the proposed constraints depicted in Section 3.1
of the manuscript, aiming to ensure the generalization of
our method to unseen forgeries. In Section 4.3 of the
manuscript, we validate the effectiveness of the proposed
constraints under within-dataset evaluation. To investigate
the effect of these constraints on generalization, we con-
duct an ablation study by training on WildDeepfake [17]
and testing on FF++ [11]. The results are shown in Table 1.
Comparing (a) and the proposed approach RECCE, we can
see that reconstruction over only real faces significantly out-
performs reconstruction over both the real and fake faces
on the cross-testing evaluation. This affirms that exploring
the common characteristics of genuine faces is more suit-
able than overfitting specific forgery patterns presented in
the training set. Comparing (b) and our method RECCE,
we observe that the proposed metric-learning loss yields a
1.24% AUC gain, which shows that it is beneficial to model
the distribution of real samples while strengthening the dif-
ference between real and fake faces in the embedding space.



Methods FF++ Celeb-DF DFDC

AUC ↑ EER ↓ AUC ↑ EER ↓ AUC ↑ EER ↓
Xception [11] 51.50 48.88 53.95 46.91 58.58 44.39
RFM [12] 56.70 45.27 59.53 42.94 61.54 41.70
Add-Net [17] 56.61 44.47 68.50 35.76 63.21 40.48
F3-Net [10] 57.80 43.99 64.21 39.70 62.07 41.44
MultiAtt [15] 60.69 42.74 80.37 27.00 65.93 38.68
RECCE (Ours) 59.86 42.61 84.79 23.12 69.87 35.86

Table 3. Cross-dataset evaluation in terms of AUC (%) and EER
(%) by training on WildDeepfake [17]. Our method generally out-
performs other approaches on unseen forgeries.

Study on multi-scale graph reasoning. We study the ef-
fectiveness of the multi-scale graph reasoning module de-
scribed in Section 3.2 of the manuscript. Specifically, we
conduct ablation experiments on the aggregation operator
and the multi-scale structure of multi-scale graph reason-
ing. The results are shown in Table 2. Note that we use
the bilinear interpolation to keep summation and concate-
nation properly in the spatial dimension. From Table 2,
we observe that the non-local [14] operator performs bet-
ter than simple summation and concatenation. This means
that simple operators are not sufficient to aggregate the dis-
crepancy features embedded in the decoder blocks. Com-
paring with Table 2(c), our method achieves an AUC im-
provement of 1.07%. This is mainly because the non-local
operator models dense correspondence between the encoder
output and the decoder features, which may aggregate con-
founding factors from the irrelevant regions to hinder the
reasoning process. Instead, our proposed graph reasoning
keeps the spatial correspondence and is more effective in
scoring the discrepancy features from the decoder to en-
hance the encoder output for better reasoning about forgery
cues. In comparison with the variant (d) which only consid-
ers single-scale information, our method achieves a 1.18%
AUC gain. The improvement validates the effectiveness of
the multi-scale designing of our multi-scale graph reasoning
module. These results verify the superiority of the proposed
graph reasoning with the multi-scale structure.

2.2. Generalization Evaluation

In Section 4.2 of the manuscript, we conduct the cross-
dataset evaluation by training on FF++ and testing on the
other three datasets. In this part, we provide more experi-
mental results on cross-dataset evaluation to better demon-
strate the generalization ability of our approach. Specifi-
cally, we train our approach and existing methods on Wild-
Deepfake [17] and then test them on FF++ [11], Celeb-
DF [7], and DFDC [3]. The results are shown in Table 3.
We can see that RECCE achieves better generalization per-
formance compared with other competitors. Take the chal-
lenging DFDC [3] as an example, where the fake images are

Methods Train DF F2F FS NT Cross Avg.

Xception [11]

DF

98.44 66.21 68.67 66.79 67.22
RFM [12] 98.80 65.18 72.69 63.44 67.10
Add-Net [17] 98.04 68.67 68.61 68.36 68.55
Freq-SCL [6] 98.91 58.90 66.87 63.61 63.13
MultiAtt [15] 99.51 66.41 67.33 66.01 66.58
RECCE (Ours) 99.65 70.66 74.29 67.34 70.76

Xception [11]

F2F

72.93 96.21 64.26 70.48 69.22
RFM [12] 67.80 96.44 64.67 64.55 65.67
Add-Net [17] 70.24 96.35 59.54 69.74 66.51
Freq-SCL [6] 67.55 93.06 55.35 66.66 63.19
MultiAtt [15] 73.04 97.96 65.10 71.88 70.01
RECCE (Ours) 75.99 98.06 64.53 72.32 70.95

Xception [11]

FS

79.54 62.88 97.02 56.46 66.29
RFM [12] 81.34 61.53 98.26 55.02 65.96
Add-Net [17] 72.82 59.50 97.56 53.10 61.81
Freq-SCL [6] 75.90 54.64 98.37 49.72 60.09
MultiAtt [15] 82.33 61.65 98.82 54.79 66.26
RECCE (Ours) 82.39 64.44 98.82 56.70 67.84

Xception [11]

NT

74.50 78.23 60.19 87.67 70.97
RFM [12] 75.39 72.24 62.83 85.51 70.15
Add-Net [17] 77.55 75.42 54.30 84.96 69.09
Freq-SCL [6] 79.09 74.21 53.99 88.54 69.10
MultiAtt [15] 74.56 80.61 60.90 93.34 72.02
RECCE (Ours) 78.83 80.89 63.70 93.63 74.47

Table 4. Cross-testing in terms of AUC (%) on different manipu-
lation techniques of FF++ [11]. Gray background indicates intra-
testing results. Our method generalizes better on unseen forgery
types compared with other approaches.

Methods Compress Blur Contrast Saturate Pixelate Avg.

Xception [11] 91.66 69.12 97.23 98.35 84.29 88.13
RFM [12] 91.27 58.51 96.49 98.62 84.50 85.88
Add-Net [17] 86.10 69.29 97.77 95.42 75.89 84.89
F3-Net [10] 89.00 47.63 96.83 97.51 76.23 81.44
MultiAtt [15] 90.70 69.68 98.71 99.21 85.71 88.80
RECCE (Ours) 91.75 76.92 98.87 99.22 90.13 91.38

Table 5. Robustness evaluation in terms of AUC (%) on FF++
c23 [11] dataset. “Avg.” indicates the mean score. Our framework
consistently outperforms other competitors under different inter-
ference.

generated by various manipulations with different perturba-
tions, our method yields a 3.94% AUC gain while decreases
EER by 2.82% compared with MultiAtt [15].

Furthermore, we supplement more results for Table 4
displayed in the manuscript. The complete comparison re-
sults are shown in Table 4, from which we observe that
RECCE consistently outperforms the state-of-the-art ap-
proaches on unseen forgery types. These additional exper-
iments demonstrate that it is more suitable to explore the
common features of real faces rather than overfitting spe-
cific forgery patterns presented in the training samples.



Origin Compress Blur Contrast Saturate Pixelate

Real

Mask

Fake

Mask

Figure 1. The visualization of the difference masks of the proposed method on WildDeepfake [17] dataset under various perturbations.
We can see that our method produces consistent difference masks across the listed perturbations for real and fake faces, respectively. This
implies that our method effectively captures the essential discrepancies between real and fake samples. Best viewed in color.

2.3. Robustness Evaluation

In Section 4.4 of the manuscript, we demonstrate the ro-
bustness of the proposed method under several unseen per-
turbations on WildDeepfake [17]. Here we additionally use
FF++ c23 [11] (i.e., high-quality) as training data to further
justify the robustness of the proposed method. The results
are shown in Table 5. We can see that our proposed frame-
work RECCE consistently outperforms other competitors
under the considered perturbations, often by a large mar-
gin. For instance, our approach achieves an AUC gain of
4.42% compared with the second best method (i.e., Mul-
tiAtt [15]) under pixelation. Moreover, to understand the
robustness of RECCE in an intuitive way, we visualize the
difference masks obtained from the reconstruction guided
attention module under different interference in Figure 1.
We observe that our method generates consistent difference
masks across various distortions for genuine and forged
samples respectively, which implies that our method can
effectively capture the essential discrepancies between real
samples and fake samples even with unseen perturbations.
The visualization, from another viewpoint, demonstrate the
robustness of our proposed method.

3. Limitation

In this work, we focus on modeling the distribution of
real faces to separate forged images from genuine ones.

Thus, when the real faces in the training dataset are severely
biased, e.g., only includes real faces for a single gender,
race, or age group, our method may yield a relatively high
false rejection rate. We think that using larger databases
for genuine faces like [8, 13, 16] to train the reconstruction
network could relieve this problem in the future.
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