Exploring Frequency Adversarial Attacks for Face Forgery Detection
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Abstract

Various facial manipulation techniques have drawn seri-
ous public concerns in morality, security, and privacy. Al-
though existing face forgery classifiers achieve promising
performance on detecting fake images, these methods are
vulnerable to adversarial examples with injected impercep-
tible perturbations on the pixels. Meanwhile, many face
forgery detectors always utilize the frequency diversity be-
tween real and fake faces as a crucial clue. In this paper; in-
stead of injecting adversarial perturbations into the spatial
domain, we propose a frequency adversarial attack method
against face forgery detectors. Concretely, we apply dis-
crete cosine transform (DCT) on the input images and in-
troduce a fusion module to capture the salient region of ad-
versary in the frequency domain. Compared with existing
adversarial attacks (e.g. FGSM, PGD) in the spatial do-
main, our method is more imperceptible to human observers
and does not degrade the visual quality of the original im-
ages. Moreover, inspired by the idea of meta-learning, we
also propose a hybrid adversarial attack that performs at-
tacks in both the spatial and frequency domains. Exten-
sive experiments indicate that the proposed method fools
not only the spatial-based detectors but also the state-of-
the-art frequency-based detectors effectively. In addition,
the proposed frequency attack enhances the transferability
across face forgery detectors as black-box attacks.

1. Introduction

With the rapid development of generative adversarial
network (GAN), face forgery generation attracts increas-
ing attention, such as Deepfake [46], FaceSwap [25],
Face2Face [45], and NeuralTextures [44]. These techniques
derive plenty of interesting applications, for instance, trying
on makeup virtually and editing faces in the film industry.
However, despite the positive aspect, face forgery genera-
tion may be maliciously abused, causing serious problems
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Figure 1. [Illustration of adversarial examples generated by
FGSM [15], PGD [31] and our method. The original image is
classified as a fake face by the face forgery detector. After im-
plementing these attacks, the adversarial examples are misclassi-
fied as real faces. Compared with FGSM [15] and PGD [31], our
method associated with the frequency adversarial attack generates
more natural perturbations, where the image quality of the adver-
sarial example is much closer to the original image.

of security and privacy. Therefore, it is essential to design
face forgery detection methods to distinguish the manipu-
lated face from the real one.

Various face forgery detectors [1,7,8,38] are proposed to
learn the decision boundary between real and fake faces and
achieve significant performance on multiple datasets [9,37].
However, existing methods are vulnerable to the adversar-
ial examples, which leaves a serious backdoor for the secu-
rity of detectors. For instance, a forged face image that is
classified correctly as fake by adding adversarial perturba-



tions can fool the detector to make a wrong decision as real.
Existing works [4, 13,21, 26, 34] have explored the robust-
ness of face forgery detection methods, but these methods
add adversarial perturbations or patches on the original im-
ages, which are easily recognized by human eyes. In brief,
the adversarial examples aim to fool a face forgery detec-
tor, while the objective of face forgery generation is to fool
humans. An implicit attack that fools humans and detectors
at the same time brings out a more serious problem of se-
curity. Meanwhile, more and more works [5, 36] consider
the frequency diversity between real and fake faces as the
essential clues for face forgery detection. It inspires us to
conduct the adversarial attack in the frequency domain to
boost the transferablility across various detectors.

To address the above issues, we propose a frequency ad-
versarial attack method to add adversarial perturbations in
the frequency domain. First, we apply discrete cosine trans-
form (DCT) to transfer the input images into the frequency
domain. Specifically, we utilize a fusion module to slightly
modify the energy in different frequency bands via the ad-
versarial loss. The indirect injection of adversary into fre-
quency domain avoids the redundant noise of attacks in the
spatial domain (e.g., FGSM [51], PGD [31]) and does not
degrade the visual quality of original images. After that, we
apply inverse DCT back to the spatial domain and obtain
the final adversarial examples. For face forgery detectors,
some existing methods [41, 53] only consider the noise pat-
tern in the spatial domain to detect the fake faces, while oth-
ers [28, 30, 36] utilize the frequency information as a clue.
Moreover, some methods [5,27,32] combine the discrimi-
native features from both domains to learn the boundary be-
tween real and fake faces. Therefore, in order to enhance the
generalization of the proposed attack method, we propose a
hybrid adversarial attack to integrate the spatial adversarial
attack and frequency adversarial attack into a whole frame-
work. Inspired by the idea of meta-learning [35], we alter-
nately optimize the perturbations based on the adversarial
gradients in different domains. The compatible ensemble
of adversarial attacks can reserve the virtues of attacks in
both domains. Adversarial examples with different attacks
are illustrated in Figure 1.

Our main contributions can be summarized as follows.

* For the task of face forgery detection, we propose a
novel adversarial attack method to generate perturba-
tions in the frequency domain. Compared with the pre-
vious attacks, our method generates more impercepti-
ble perturbations for human observers.

* To further boost the transferability of the attack, we
propose a hybrid adversarial attack based on the strat-
egy of meta-learning to simultaneously perform at-
tacks on the spatial and frequency domain.

* We perform the proposed method both on the spatial-
based face forgery detectors and the state-of-the-art

frequency-based detectors. Extensive experiments on
benchmarks demonstrate the effectiveness of our at-
tack under both white-box and black-box settings.

2. Related Work

In this section, we briefly introduce the development
of face forgery generation and detection. Besides, we re-
view recent adversarial attack methods, especially for face
forgery detection.

2.1. Face Forgery Generation

Face forgery generation [14, 23, 24] aims to craft the
face image that is authentic in the eyes of human beings,
which brings numerous productive applications, e.g., virtual
shopping, online education, film production, etc. In sum-
mary, face forgery generation can be divided into four cate-
gories [33]: reenactment, replacement, editing and synthe-
sis. One typical application of reenactment is to use one’s
expression or mouth to drive another one, e.g., Recycle-
GAN [3], STGAN [29]. FaceSwap [25] is the most com-
mon type of replacement. Averbuch-Elor et al. [2] ani-
mate the expressiveness of the subject through 2D warps
and transfer it to the target automatically. Face2Face [45]
considers the facial expressions as under-constrained prob-
lems to transfer the deformation between source and target.
Editing and synthesis are used to add or remove ones’ at-
tributes consisting of hair, glasses, age, makeup, etc. In
this paper, we choose the fake face images from the pubic
datasets [9,37] rather than generated by ourselves. In other
words, we do not get access to the concrete approaches to
manipulate the fake face.

2.2. Face Forgery Detection

Despite the creative applications of face forgery gen-
eration, this technology can be used abusively for mali-
cious and unethical ways. Regarding its potential malefi-
cence by the academic community, researchers attempt to
detect if an image is manipulated or not to alleviate the
danger, which is considered as a binary classification prob-
lem. Some works [1,7,38,53] apply deep neural networks
to extract discriminative features for face forgery detection.
These methods only utilize the information from the spatial
domain, which generally overfits the classification bound-
ary. On the other hand, some works [11,28, 30, 36,40, 49]
observe the diversity of real faces and fake faces in the
frequency domain and propose the face forgery detection
method with the frequency clues. F>-Net [36] integrates the
frequency-aware decomposition and local frequency statis-
tics into a whole learning framework to classify the real and
fake faces. Luo et al. [30] design several modules by tak-
ing full advantage of the high-frequency features at multiple
scales to achieve higher accuracy. Furthermore, some meth-
ods [5,16-18,27,32] integrate the spatial and frequency in-



Mo Py

3 Spllt
I

Original Image X""‘
Fake

Fusion
Z- Merge
+ mmp |

Frequency Domain

backward propagation

IDCT Adversarial Example X
Real

Detector

Figure 2. The pipeline of frequency adversarial attack. We first split the input image into K x K blocks and apply DCT on each block
to transfer them into the frequency domain. We then introduce the frequency perturbation Py and a predefined weight matrix M that
controls the step sizes in different frequency bands. After that, we implement IDCT and merge them into the adversarial example. In each
iteration, we calculate the adversarial loss and update the perturbation Py based on it.

formation into a whole framework to detect the fake face ac-
curately. LRL [5] adopts a multi-task learning strategy with
two output branches, where one branch is to learn the sur-
face label and the other one aims to focus on the edge of the
modified region. Li et al. [27] combine the frequency clues
with the spatial features to enlarge the difference between
real faces and fake faces in the embedding space. Motivated
by the diversity in the frequency domain, the proposed hy-
brid adversarial attack considers the effect on both domains
to learn the robustness of existing face forgery detectors.
For a complete comparison, we both select the spatial-based
models and the frequency-based models to validate the ef-
fectiveness of the proposed attack method.

2.3. Adversarial Attack

Different from face forgery generation, the aim of adver-
sarial attack is to fool a machine rather than human beings.
Generally, given a well-trained network, the goal of ad-
versarial attack is to generate the adversarial examples that
make the network predict wrongly. The category for adver-
sarial attack can be divided into white-box attack [15,31,42]
and black-box attack [10,47,51] roughly, which is based on
the attacker gets access to the concrete structures and pa-
rameters of victim models or not. While the majority of ex-
isting attack methods focus on the multi classification task,
adversarial attack has been investigated in many fields, such
as object detection [50], face recognition [52], visual track-
ing [22], etc.

For adversarial attacks in face forgery detection, some
works [4,13,21,26,34] explore the robustness of models in
different settings. Li et al. [26] manipulate the noise vec-
tors and latent vectors of Style-GAN [48] with gradients to
fool the face forgery models. Neekhara et al. [34] perform
adversarial attacks in a black-box setting for face forgery
detection. Carlini et al. [4] present the robustness of face
forgery classifiers under various types of attack methods.
The methods mentioned above generate the adversarial ex-
amples on the spatial domain, while some works [19,39] ex-
plore the frequency attack in other tasks. Since face forgery

detection has a high relation with the frequency domain, we
propose a novel attack method combined with the aspects
of frequency domain to generate more imperceptible adver-
sarial examples.

3. Method

Let X ™M denote the original image, f(X,6) denote the
face forgery detector, and & denote the corresponding
ground-truth label. Our aim is to generate the adversarial
example XY that makes the face forgery detector predict
wrongly, i.e., (X%, 6) # y&. During adversarial attack,
the objective is to maximize the loss function £( X2, &),
where L is the binary cross entropy loss in face forgery de-
tection. The concrete optimization is defined as:

arg max L(X* 48 s.t. || X — Xi“i[||p <e (1)

where p is /,-norm to ensure the adversarial image close
to the original image. We choose the untargeted attack to
maximize the adversarial loss instead of the targeted attack
due to the diversity of classification boundaries in differ-
ent models. Although the targeted attack deteriorates the
white-box model seriously, it has an extremely weak trans-
ferability to other models, which is prone to overfit on the
specific network.

3.1. Spatial Adversarial Attack

Existing attack methods are mostly considered as spatial
adversarial attacks that modify the adversarial examples on
the pixels. Due to the limited page, we only introduce two
spatial adversarial attack methods that are utilized for com-
parisons in the experiments. More variants of these methods
can refer to [10].

Fast Gradient Sign Method (FGSM). FGSM [15] is a
single-step attack method that calculates the perturbations
based on the gradient of the adversarial loss. The optimiza-
tion is defined as:

xadv — xinit 4 Sign(VXﬁ(Xadva ygt)). 2)
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Figure 3. The diversity between real faces and fake faces in the
frequency domain. We select two examples with different labels
from FaceForensics++ [37] and calculate the energy in different
frequency bands. The energy of fake faces in the high frequency
bands is richer than the one in real faces.

Projected Gradient Descent (PGD). PGD [31] is a
multi-step variant of FGSM [51]. Meanwhile, it adopts a
random initialization of perturbations at the first step. The

update procedure is defined as:
ngv :Xinit

adv : adv : adv t (3)

X2 =Clip {Xn + a - sign(Vx L(XAY, y# ))} .

3.2. Frequency Adversarial Attack

Previous studies [5, 36] have proven the difference be-
tween the real face and the fake face in the frequency do-
main. Figure 3 demonstrates the diversity of energy in dif-
ferent frequency bands between a real face and a fake face.
The low frequency region is related to the content of im-
ages accounting for most of the energy, while the high fre-
quency region is related to the edge and texture information
of images. The fake face shows more energy in the high fre-
quency regions compared to the real one. Inspired by this
observation, we propose a frequency adversarial attack to
directly modify the energy in the frequency domain. Com-
pared to the spatial attacks, our attack method hides the ad-
versary in the frequency bands and decreases the redundant
noise in the pixel level, leading to a more invisible attack.
The pipeline of frequency adversarial attack is illustrated
in Figure 2. We summarize the optimization procedure as
follows:

arg max L(D'(F(D(X*™))),0,vy%),

, . “4)
s.t. ||D(XY) = DXM™M)||, < e,

where D(-) denotes discrete cosine transform (DCT), D’(+)
denotes inverse discrete cosine transform (IDCT), F rep-

Algorithm 1: Frequency Adversarial Attack

Input: Inputimage X™, forensic detector f(-);
Output: Adversarial examples X";

1 Classify f(X3%,0) to get the true label 32 ;

2 Generate the initial perturbations Py ~ (0, 1);

3 Initialize X3 = XNt g = ¢2t;

4 forn =0to N do

5 Split X3 into K x K blocks;

6 | Apply the DCT on each block D(X32);

7 Calculate the adversarial loss £ via Eq. 4;

8 Update the perturbation P, via Eq. 7;

9 Fuse P, and M into D(X2%) via Eq. 6;

10 | Apply the IDCT on each block D' (F (X)),

11 | Merge K xK blocks into X};

12 Classify f(X2Y,0) to get the predicted result 7;

13 end

adv.
14 return X7i7;

resents the fusion module to modify the energy in the fre-
quency domain. Meanwhile, we utilize the [,-norm to con-
strain the deviation of the original distribution of frequency.

For details, we first implement DCT to transfer the im-
age from spatial domain to frequency domain by following
[36]. To balance the efficiency and quality of transforma-
tions, we split the original image into K x K blocks before
DCT. For each block, we apply the DCT as follows:

D(u,v) = c(u) - ¢(v) '

COSs

where X (i, j) is the value on the coordinate (i, j) of image,
¢(u) and ¢(v) aim to make the DCT matrix orthogonal and
N is the size of each block. Then, we generate the initial
perturbations P~£(0, 1) to inject on the frequency band.
When the RGB image transfers into the frequency domain,
the range of energy in different frequencies are lopsided as
shown in Figure 3. Therefore, we propose a matrix M with
adaptable step sizes, which is based on the proportion of
each frequency band to balance the influence of lopsided
energy. Moreover, the matrix M is dynamically reset for
diverse inputs to maintain the visual quality. The complete
fusion module is defined as:

FXa®) = D(X3Y) + M © P, ©)

where ® is Hadamard product. During the optimization,
Pn+1 is updated as follows:

Por1 = Pa+A-sign(VpL(D' (F(D(X2)), 0,42)), (7)
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Figure 4. The procedure of hybrid adversarial attack. To combine the adversarial attack in different domains, we calculate gradients from
both domains in order and update the perturbations. Then, we switch the order of domains in the next step. After iterations, the adversarial
example gathers the gradients from both domains, leading to a stronger adversarial attack on both white-box and black-box settings.

where A is the step size in each iteration. After that, we
apply IDCT to transfer each block in the frequency domain
back to the spatial domain. Note that the solo operation
of DCT and IDCT is non-destructive, where no block ar-
tifacts are introduced in the process. When it reaches the
maximum iteration or classifies the X" as a wrong label,
we end up the loop and output the final adversarial example
X3 The pseudo code is shown in Algorithm 1.

3.3. Hybrid Adversarial Attack

Meta-learning [12] aims to train a model that can quickly
adapt to a new task with only a few training steps and train-
ing data, which is summarized as ‘learn to learn’. Inspired
by the idea of meta-learning [35], we propose a hybrid ad-
versarial attack combined with the spatial domain and the
frequency domain. Different from the vanilla meta-learning
that updates a new model through the training data, we di-
rectly utilize the gradient from different domains to itera-
tively update the adversarial perturbations. Our hybrid ad-
versarial attack can gather the virtues from both domains
and integrate them in a compatible way. The hybrid per-
turbations improve the effectiveness of adversarial attacks
in white-box settings and have a strong transferability on
other models. The procedure of our hybrid adversarial at-
tack is shown in Figure 4.

Let As and Ap denote the adversarial attack in spatial
and frequency domain, respectively. At first, we compute
the gradient based on the adversarial loss in the frequency
domain. The optimization of A in the frequency domain
is calculated by:

77/ =N—7f" VWE.AF (777 97 ygt)’ (8)

where 7’ is frequency values and vy is the step size in the
frequency domain. Then, we compute the gradient based
on the adversarial loss in the spatial domain. The process of
spatial attack Ag is formulated as:

0" =n" =~ VypLas(n',0,y%), ©9)

where 71" is pixel values and ~; is the step size in the
spatial domain. The detailed procedure of adversarial at-
tacks in each domain follows the above sections. We select

Algorithm 2: Hybrid Adversarial Attack
Input:

Input image X ™, forensic detector f(-),

spatial attack Ag, frequency attack Ar;
Output: Adversarial examples X";

1 Classify f(X2%,0) to get the true label 32 ;

2 Initialize X34 = Xnit g = ¢2t;

3 forn =0to N do

Calculate the adversarial loss £ 4,. via Eq. 4;

Update the perturbation 7’ via Eq. 8;

Calculate the adversarial loss £ 44 via Eq. 1;

Update the perturbation r”” via Eq. 9;

Clip the output images X% with the lp-norm;

n+l

Classify f(X29V,6) to get the predicted result g;

n+1>
10 Switch the order of attacks Ag and AFr;
11 end

adv.
12 return X7<Y;

PGD [31] as our spatial attack and the proposed frequency
attack method as our frequency attack, respectively. Note
that we remove the clip function in both attacks and add it
at the end of each iteration. After each iteration, we switch
the order of frequency attack Ay and spatial attack Ag, and
repeat the whole procedure. The complete algorithm of our
hybrid adversarial attack is presented in Algorithm 2.

4. Experiment

In this section, we first introduce the experimental setup.
Then, we evaluate the performance of the proposed attack
method with the single attacks and the ensemble attacks
on the spatial-based models. We further validate our at-
tack method on the frequency-based models. In addition,
we conduct ablation studies on the variations of our method
and different frequency bands. We finally evaluate the im-
age quality of our method qualitatively and quantitatively.

4.1. Experimental Setup

Datasets. DFDC [9] is a challenging dataset with a vari-
ety of anonymous manipulations and perturbations. We ran-
domly select 1000 fake face images from the DFDC dataset.



Table 1. The accuracy of spatial-based and frequency-based face forgery detectors on the DFDC [9] and FaceForensics++ [38] datasets.

| Dataset | EfficientNet_b4 [43]  ResNet.50 [20]  XceptionNet [6] | F'-Net [5] LRL [36] |
DFDC [9] 91.1% 78.7% 88.0% 69.8% 90.4%
FaceForensics++ [37] 94.3% 89.1% 92.7% 88.8% 98.2%

Table 2. The attack success rate of fake faces on spatial-based
models on the DFDC [9] dataset.

Table 3. The attack success rate of fake faces on spatial-based
models on the FaceForensics++ [37] dataset.

| Model | Attack | Eff b4 [43] Res50[20] Xcep [6] | | Model | Attack | Eff b4 [43] Res50[20] Xcep [6] |
FGSM 332% 7.1% 2.3% FGSM 38.7% 4.8% 0.9%
Eff_b4 [43] | PGD 77.7% 8.7% 1.8% Eff_b4 [43] | PGD 71.6% 1.3% 0.3%
Ours 97.1% 20.1% 2.7% Ours 83.2% 22.7% 1.4%
FGSM 0.0% 36.7% 0.9% FGSM 3.2% 32.0% 2.1%
Res50 [20] | PGD 0.0% 85.4% 0.0% Res50 [20] | PGD 3.9% 60.2% 2.3%
Ours 23.2% 87.8% 24.1% Ours 41.4% 65.4% 49.6%
FGSM 0.0% 8.4% 45.6% FGSM 1.1% 4.1% 18.9%
Xcep [6] PGD 0.0% 10.1% 72.3% Xcep [6] PGD 1.1% 7.7% 61.6%
Ours 1.2% 14.3% 77.5% Ours 1.5% 8.5% 70.5%

FaceForensics++ [37] is a popular dataset containing real
videos from YouTube and corresponding fake videos, con-
sisting of Deepfake [46], Face2Face [45], FaceSwap [25]
and NeuralTextures [44]. We totally choose 560 (140x4)
individual frames from each fake face video.

Models. For the spatial-based face forgery detectors, we
choose three spatial-based classification networks, i.e., Ef-
ficientNet_b4 [43], ResNet_50 [20], and XceptionNet [6].
For the frequency-based models, we consider the state-of-
the-art face forgery detectors, i.e., F3-Net [36] and LRL [5].
All these models are trained by following the correspond-
ing papers. The accuracy of these models on the selected
images from different datasets are summarized in Table 1.

Evaluation metrics. For DFDC and FaceForensics++,
we both choose the attack success rate as the evaluation
metric. It is defined as the proportion of successfully attack
images in all images that are classified as fake faces, i.e.,
+ 25:1 F(X3Y 0) £ f(X™Mt g). For the image quality
assessment, we utilize MSE, PSNR and SSIM as the evalua-
tion metrics to present the difference between the generated
adversarial example and the original image.

Implementation details. The input size of images for
three spatial-based models is 320x320x3. And the input
sizes for F>-Net [36] and LRL [5] are 299%x299x3 and
320x320x 3, respectively. We resize the adversarial exam-
ples to the corresponding size for the transfer attack. As for
the parameters for attacks, we set the maximum perturba-
tion of each pixel to be ¢ = 0.1 for both FGSM and PGD.
We also use PGD as the spatial attack for the hybrid attack.

4.2. Attack on Spatial-based Models

We compare the proposed method with FGSM [15] and
PGD [31] on attacking spatial-based models. Table 2 and

Table 3 report the attack success rates on the DFDC [9]
and FaceForensics++ [37] datasets, respectively. We con-
sider the basic classifiers in the first column to generate the
adversarial examples and transfer them on the other net-
works to evaluate. The diagonal blocks indicate white-box
attacks, while the off-diagonal blocks indicate their transfer-
ablility as black-box attacks. As Table 2 and Table 3 report,
the proposed method outperforms FGSM and PGD for the
white-box attack and gains higher attack success rates for
the black-box attack. For instance, the adversarial exam-
ples generated by Res50 with our method get success rates
of 41.4% on Eff_b4 and 49.6% on Xcep on the FaceForen-
sics++ [37] dataset, which is 38.2% higher than FGSM and
37.5% higher than PGD on Eff_b4, and 47.5% greater than
FGSM and 47.3% higher than PGD on Xcep. It suggests
that the proposed method combined with the frequency at-
tack enhances the transferability of adversarial examples.
Due to the obvious diversity of structure between Eff_b4 and
Xcep, the adversarial attacks between two networks have
limited transferablility on each other.

4.3. Ensemble Attack on Spatial-based Models

As stated in [51], the adversarial examples with an en-
semble of multiple networks achieve much stronger attack
performance. We utilize an ensemble of two networks to
attack the other one in three ways: ensemble in pixel, en-
semble in loss, and ensemble in logits. The attack results
on two datasets are summarized in Table 4 and Table 5, re-
spectively. We consider all three networks and the sign ‘-’
in the first column indicates the network not used during
attacks. Thus, the diagonal blocks indicate transfer attacks
(i.e., black-box setting) and the off-diagonal blocks indicate
the white-box attacks. From both datasets, we observe that
the ensemble in logits performs the strongest attack perfor-



Table 4. The attack success rate of fake faces with ensemble at-
tacks on the DFDC [9] dataset.

Table 6. The attack success rate of fake faces on frequency-based
models on the DFDC [9] dataset.

Model [ Ens. [ Eff b4[43] Res50[20] Xcep [6] | | Model | Atack [ F-Net[5] LRL [36] |
Pixel 4.1% 86.9% 44.4% FGSM 43.5% 9.6%

-Eff_b4 [43] | Loss 2.3% 72.0% 57.3% F*-Net [5] | PGD 97.6% 4.0%
Logit 2.4% 88.5% 77.5% Ours 98.7% 10.3%
Pixel |  79.7% 20.4% 28.5% FGSM 2.3% 71.3%

-Res50 [20] | Loss 71.1% 18.1% 46.2% LRL [36] | PGD 3.0% 100.0%
Logit | 93.1% 22.1% 65.3% Ours 5.5% 100.0%
Pixel | 72.4% 86.2% 13.1% Eff b4 [43] | Ours 7.4% 8.5%

-Xcep [6] Loss 76.4% 75.8% 14.7% Res50 [20] | Ours 12.8% 43.6%
Logit |  95.4% 95.6% 12.7% Xcep [6] | Ours 7.6% 9.1%

Table 5. The attack success rate of fake faces with ensemble at-
tacks on the FaceForensics++ [37] dataset.

Table 7. The attack success rate of fake faces on frequency-based
models on the FaceForensics++ [37] dataset.

Model [ Ens. | Eff b4 [43] Res50[20] Xcep [6] | | Model | Atack [ F-Net[5] LRL [36] |
Pixel 23.1% 64.0% 71.1% FGSM 24.8% 77%

-Eff b4 [43] | Loss 27.0% 52.9% 79.1% F*-Net [5] | PGD 80.9% 28.7%
Logit 27.5% 69.5% 68.6% Ours 82.5% 36.2%
Pixel 77.3% 26.6% 49.1% FGSM 02% 68.6%

-Res50 [20] | Loss 55.2% 21.8% 57.9% LRL [36] PGD 0.0% 98.7%
Logit 78.0% 29.8% 76.1% Ours 0.5% 99.3%
Pixel 78.9% 64.6% 30.7% Eff b4 [43] | Ours 0.5% 11.8%

-Xcep [6] Loss 83.4% 57.3% 36.2% Res50 [20] | Ours 7.1% 57.5%
Logit 82.0% 64.4% 38.2% Xcep [6] Ours 1.1% 19.5%

mance in most cases. In the DFDC [9] dataset, when attack-
ing on Res50 network, the ensemble in logits of Res50 and
Eff_b4 obtains a 7.8% higher than the single network Res50
under the white-box setting. Besides, for the FaceForen-
sics++ [37] dataset, the ensemble in logits of Res50 and
Eff b4 achieves a 38.2% success rate on Xcep, while the
single network Res50 only gets an 8.5% success rate under
the black-box setting. To sum up, an ensemble of different
models can increase the diversity of structures, leading to a
greater transferability to other models.

4.4. Attack on Frequency-based Models

The proposed hybrid attack is related to the frequency
domain. To further illustrate its effectiveness, we also se-
lect two frequency-based face forgery detection methods,
i.e., F3-Net [5] and LRL [36]. Both methods collect the fre-
quency information to distinguish the diversity between the
real and fake faces to detect. Table 6 and Table 7 report the
attack results on the DFDC [9] and FaceForensics++ [37]
datasets, respectively. For better comparison, we also con-
duct the experiments of two detectors with FGSM [15] and
PGD [31]. Moreover, we test the transferability of adversar-
ial examples that our hybrid attack generates when attack-
ing the spatial-based detectors. Briefly, our hybrid adversar-
ial attack associated with the frequency domains achieves
favorable white-box attacks in both datasets, where ~90%
of fake images are classified wrongly as real faces. For the

transfer attack, our method is marginally greater than the
spatial attacks. When using the spatial-based detectors for
transfer attacks, Res50 outperforms the other two networks
with success attack rates of 12.8% for F>-Net and 43.6%
for LRL on DFDC [9], and 7.1% for F3-Net and 57.5% for
LRL on FaceForensics++ [37]. The proposed hybrid attack
with the frequency domain strengthens the transferability of
networks on the frequency-based models as well.

4.5. Ablation Study

We conduct a series of ablation studies on the proposed
attack method. Due to the limited page, we only use
Res50 [20] as the threat model to generate adversarial ex-
amples on the FaceForensics++ [37] dataset and show its
transferability on Eff b4 [43] and Xcep [6].

Variants of our method. We perform some variants of
our method to analyze the effects on different domains.
Concretely, we first only apply the spatial attack to craft
adversarial examples. Then, we only implement the fre-
quency attack. Besides, we simply sum the perturbations
from the spatial and frequency domain. The concrete results
are summarized in Table 8. While the sole spatial attack
is prone to overfit the existing model and yields a limited
transferability, the sole frequency attack always falls into
local optimization and retains a fixed loss for binary clas-
sification, leading to a limited attack ability. For the com-
bination of perturbations, the simple sum of perturbations



Table 8. The attack success rate of fake faces with variants of our
method on the FaceForensics++ [37] dataset.

| Method | Effb4[43] Res50[20]  Xcep [6] |
Spatial attack 3.9% 60.2% 2.3%
Frequency attack 14.5% 29.3% 15.9%
Sum attack 7.7% 61.2% 12.1%

| Hybrid attack | 41.4% 65.4% 49.6% |

Table 9. The attack success rate of fake faces for attacking differ-
ent frequency bands on the FaceForensics++ [37] dataset.

‘ Frequency ‘ Eff_b4 [43] Res50 [20] Xcep [6] ‘
Low bands 39.5% 65.2% 49.1%
Middle bands 38.4% 62.7% 48.0%
High bands 36.2% 61.2% 47.1%

‘ All bands ‘ 41.4% 65.4% 49.6% ‘

Table 10. Quantitative evaluation of adversarial examples gener-
ated by FGSM [15], PGD [31] and our method on the FaceForen-
sics++ [37] dataset.

| Attack method |  MSE(]) PSNR (1) SSIM (1) |
FGSM 0.0279 23.3 0.0881
FGD 0.0238 304 0.1343

[ Ours \ 0.0027 42.7 0.1763 |

from two domains improves the performance of white-box
attack but weakens its transferability. Our hybrid adversar-
ial attack has more aggressive attack performance on both
white-box and black-box attacks, which indicates that our
method maintains both benefits from each domain and inte-
grates them in a compatible way.

Frequency bands. To study the effect of different fre-
quency bands, we divide the whole frequency band into
three bands, i.e., low band, middle band, and high band,
and only attack one of the bands with the hybrid adversarial
attack. Table 9 reports the attack performance for different
frequency bands. Compared with middle bands and high
bands, the hybrid adversarial attack on low bands performs
favorably under both white-box attacks (e.g., Res50 [20])
and black-box attacks (e.g., Eff_b4 [43] and Xcep [6]), since
the low bands carry more content information of images and
generate more perturbations in the spatial domain.

4.6. Image Quality Assessment

In order to illustrate the superior image quality by our
method, we analyze the generated adversarial examples
qualitatively and quantitatively. In Figure 5, we visualize
adversarial examples crafted by FGSM [15], PGD [31] and
our method. The adversarial examples by FGSM and PGD
have obvious noise patterns when zooming in, while the
ones generated by our method are more imperceptible to ob-
servers. In addition, we use the common metrics for image
quality assessment to calculate the difference to the original
images. Table 10 reports the quantitative results of MSE,

o ; ~@
(a) Original  (b) FGSM [15]

(c) PGD [31]

(d) Ours
Figure 5. Qualitative evaluation of adversarial examples gener-
ated by FGSM [15], PGD [31] and our method on the Face-
Forensics++ [37] dataset. These samples contain four types of
face forgery generation, i.e., Deepfake, Face2Face, FaceSwap, and
NeuralTextures. Although all adversarial examples fool the de-
tectors as real faces successfully, the ones crafted by our hybrid
adversarial attack obtain a superior image quality.

PSNR and SSIM, where the image quality of our method
outperforms other attacks by a large margin. It suggests
that the proposed hybrid attack has a strong attack ability
and maintains the image quality highly.

5. Conclusion

In this paper, we propose a frequency adversarial attack
method for face forgery detection, which achieves a better
image quality compared to the spatial attacks. To further
improve its generalization, we propose a hybrid adversarial
attack associated with the attacks both in the spatial domain
and the frequency domain. The combination of multiple
domains reserves their virtues and achieves favorable attack
performance both on spatial-based and frequency-based
face forgery detectors. Extensive experiments on two
datasets indicate that the proposed method not only attacks
the white-box models successfully but also enhances the
transferability on other models under black-box settings.
We hope that our work can draw more attention to the
robustness of face forgery detectors.
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