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Abstract

Addressing the vulnerability of deep neural networks (DNNss) has attracted significant attention in recent years. While recent
studies on adversarial attack and defense mainly reside in a single image, few efforts have been made to perform temporal
attacks against video sequences. As the temporal consistency between frames is not considered, existing adversarial attack
approaches designed for static images do not perform well for deep object tracking. In this work, we generate adversarial
examples on top of video sequences to improve the tracking robustness against adversarial attacks under white-box and
black-box settings. To this end, we consider motion signals when generating lightweight perturbations over the estimated
tracking results frame-by-frame. For the white-box attack, we generate temporal perturbations via known trackers to degrade
significantly the tracking performance. We transfer the generated perturbations into unknown targeted trackers for the black-
box attack to achieve transferring attacks. Furthermore, we train universal adversarial perturbations and directly add them into
all frames of videos, improving the attack effectiveness with minor computational costs. On the other hand, we sequentially
learn to estimate and remove the perturbations from input sequences to restore the tracking performance. We apply the
proposed adversarial attack and defense approaches to state-of-the-art tracking algorithms. Extensive evaluations on large-
scale benchmark datasets, including OTB, VOT, UAV 123, and LaSOT, demonstrate that our attack method degrades the
tracking performance significantly with favorable transferability to other backbones and trackers. Notably, the proposed
defense method restores the original tracking performance to some extent and achieves additional performance gains when
not under adversarial attacks.
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1 Introduction

The success of DNNs has significantly advanced object track-
ing in the last decade with numerous applications such as
Communicated by Ehsan Adeli. intelligent video surveillance, autonomous driving, robotic
vision, and human-computer interaction. As object tracking
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the target and the background, existing deep object trackers
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often train DNN classifiers with positive and negative exam-
ples around the estimated target. Despite the demonstrated
success, deep object trackers are typically vulnerable to the
attack of adversarial examples. That is, adding imperceptible
perturbations on input images can degrade the performance
of the pretrained models seriously, as shown in image clas-
sification (Szegedy et al., 2014), object detection (Xie et al.,
2017b), semantic segmentation (Xiao et al., 2018), and face
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Fig. 1 Adversarial attack and defense for visual object tracking. On
top of the five state-of-the-art deep trackers SiamRPN++ (Li et al.,
2019), SiamCAR (Guo et al., 2020a), RT-MDNet (Jung et al., 2018),

and defense mainly reside in static images, and considerably
less attention has been paid to generating adversarial exam-
ples on top of video sequences for robust object tracking. The
main challenges of exploiting adversarial attack and defense
for robust visual tracking lie in two aspects. First, since visual
trackers tend to sample candidates around the target, the lim-
ited search region increases the difficulty of attack. Recent
attacks on multi-class classification are designed to fool one
image, whereas attacks on object tracking require misclassi-
fying multiple candidates simultaneously. In addition to the
classifiers, deep trackers widely use a regression network
to refine bounding boxes. Tracking performance would sig-
nificantly degrade when adversarial attacks are successfully
applied to the regression module. Existing works investigate
the regression attack for various tasks, including object detec-
tion (Gupta et al., 2021; Lu et al., 2017; Wang et al., 2021),
single object tracking (Guo et al., 2020b, 2021; Yan et al.,
2020) and multiple object tracking (Jia et al., 2019; Zhou
et al., 2023) (Lin et al., 2021). However, directly transfer-
ring these methods yields limited attack performance since
existing trackers locate the search regions around the target.
Second, motion consistency between frames causes existing
attacks on static images to perform poorly, where a tracker
can relocate the target after a few frames. Temporal consis-
tency is rarely investigated to improve attack success rates
against video sequences.

In this work, we improve the robustness of state-of-the-art
deep trackers against adversarial attacks by involving both
the spatial and temporal domains. Specifically, we do not
modify existing deep trackers and keep main components
such as sampling schemes unchanged. Existing adversar-
ial attacks can be categorized as white-box or black-box
based on whether the attackers know the internal archi-
tectures of the attacked models. For white-box attacks, we
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DiMP (Bhat et al., 2019), and TransT (Chen et al., 2021), we learn to
generate adversarial examples to attack and defend them on the David
sequence (Wu et al., 2015)

learn perturbations and inject them into input frames, yield-
ing indistinguishable binary samples (i.e., some samples
are incorrect). We use these binary adversarial examples to
retrain classifiers to degrade their performance. Specifically,
we minimize the classification loss difference between the
correct and incorrect binary samples. Meanwhile, we ran-
domly shift and rescale ground truth boxes to attack the
regression network. On the other hand, when considering the
temporal consistency between frames, we use the learned
perturbations in the current frame to initialize the pertur-
bation learning in the next frame. Applying the temporally
generated perturbations to every frame further degrades the
performance of deep trackers. Figurel shows one exam-
ple that the state-of-the-art deep trackers under adversarial
attacks drift rapidly (see the first row). For black-box attacks,
we generate the transferable perturbations with the victim
tracker and transfer them into various backbones and targeted
trackers frame-by-frame. To strengthen its transferability, we
retain the distribution of adversarial perturbations from pre-
vious frames and constantly fuse them into more transferable
and robust perturbations. The combination of perturbations
from different frames maintains the diversity of the adversary
and benefits its transferability.

Although the proposed attack method significantly
degrades the performance of various trackers, the attack
performance of generated perturbations relies heavily upon
the context of each frame, leading to a high computational
cost and a low attack speed. Similar to Moosavi-Dezfooli
et al. (2017), we further propose to train universal adversar-
ial perturbations (UAP) for visual object tracking, where we
only add the same perturbations into each frame of video
sequences. The attack speed is greatly improved since the
whole process of generating UAP is trained offline with train-
ing datasets. Only a simple addition operation is involved for
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each frame, bringing the speed close to the original tracking
speed.

We further explore adversarial defense to improve the
robustness of deep trackers against adversarial attacks. Note
that the adversarial perturbations are assumed to be unknown.
We aim to estimate the unknown perturbations in the input
videos and learn to eliminate their effects during track-
ing. The estimation process is similar to the attack process,
but the involved samples differ. As an example shown in
Fig. 1, we perform the proposed adversarial attack and
defense approaches on five state-of-the-art deep tracking
methods (Li et al., 2019; Guo et al., 2020a; Jung et al.,
2018; Bhat et al., 2019; Chen et al., 2021). Besides, the
proposed defense approach achieves additional performance
gains when the trackers are not under adversarial attacks. Our
defense module can estimate the naturally occurring adver-
sarial perturbations during input images, such as noise in the
imaging process.

Early findings of this work are presented in Jia et al. (2020,
2021) and the main differences between this manuscript and
our conference paper are:

— In addition to the original white-box attack (Jia et al.,
2020), we propose a transferring attack approach with-
out access to the targeted tracker, i.e., a black-box attack.
Building on the original attack, our transferring attack
generates dense adversarial perturbations in the spa-
tiotemporal domain and transfers them into unknown
trackers, resulting in strong attack transferability across
various backbones and trackers.

— Previous gradient-based attack (Jia et al., 2020) relies
heavily on image content, and the decision-based attack
(Jiaetal., 2021) needs to query the tracker to get the feed-
back constantly, leading to heavy computational loads
and slow attack speeds. To address this, we exploit uni-
versal adversarial perturbations and directly apply them
to all frames, thereby accelerating the attack speed and
almost maintaining the original tracking speed.

— Extensive experiments with diverse architectures of
trackers (i.e., SiamRPN++ (Li et al., 2019), Siam-
CAR (Guo et al., 2020a), RT-MDNet (Jung et al., 2018),
DiMP (Bhat et al., 2019), and TransT (Chen et al.,
2021)) on the six benchmark datasets demonstrate that
our attack causes considerable drops on various trackers.
Furthermore, our defense can exclude the adversarial per-
turbations to restore the tracking performance.

2 Related Work

In this section, we first introduce tracking methods closely
related to this work. We then review recent adversarial attack

methods, especially for visual object tracking. In addition,
we discuss the recent adversarial defense models.

2.1 Deep Object Tracking

Deep object tracking can be roughly categorized as one-stage
regression-based methods and two-stage detection-based
methods. The regression-based methods typically learn cor-
relation filters over CNN features to locate target objects
as in Ma et al. (2015). Numerous methods (Wang et al.,
2015; Held et al., 2016; Valmadre et al., 2017; Song et
al., 2017; Lu et al., 2018; Wang et al., 2019, 2020; Shen
et al., 2022; Yan et al., 2022; Ma et al., 2022; Borsuk et
al., 2022) have since been proposed to improve tracking
performance in different aspects, including feature hedg-
ing (Qi et al., 2016), continuous convolution (Danelljan et
al., 2016), particle filter integration (Zhang et al., 2017),
efficient convolution (Danelljan et al., 2017), spatiotempo-
ral regularization (Li et al., 2018b), Rol pooling (Sun et al.,
2019) and correlation-aware (Xie et al., 2022). On the other
hand, two-stage tracking-by-detection approaches first gen-
erate multiple candidate regions and then classify each as
either the target or the background. Siamese-based meth-
ods (Zhang & Peng, 2019b; Chen et al., 2022; Lai et al., 2023;
Zhang et al., 2020) are one of the widely used trackers, which
generally consist of classification and regression branches.
Some works (Lietal.,2018a; Zhu et al., 2018; Lietal., 2019)
utilize the region proposal network (RPN) (Ren et al., 2015)
to conduct feature fusion with depthwise correlation, yield-
ing more accurate tracking results. Other works (Guo et al.,
2020a; Chen et al., 2020b) exploit anchor-free architectures
to regress the bounding boxes, avoiding hyper-parameter tun-
ing. In addition, recent methods (Song et al., 2022; Gao
et al., 2022; Wei et al., 2023; Gao et al., 2023; Lai et al.,
2023) use Transformer (Vaswanietal.,2017) or Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) to learn the spatial
and temporal features for object tracking, including CNN-
Transformer based trackers (Chen et al., 2021; Wang et al.,
2021a; Yan et al., 2021; Yu et al., 2021; Cao et al., 2021;
Mayer et al., 2022; Xing et al., 2022; Ma et al., 2022) and
fully-Transformer based trackers (Xie et al., 2021; Lin et
al., 2021; Cui et al., 2022; Chen et al., 2022). From the per-
spective of model updates, existing deep tracking approaches
can be classified as either offline or online. Offline track-
ers (Bertinetto et al., 2016; Li et al., 2018a; Zhu et al.,
2018; Guo et al., 2020a; Chen et al., 2020b) do not update
model parameters during the inference stage, leading to a
higher tracking speed. In contrast, online trackers (Han et al.,
2017; Danelljan et al., 2019; Bhat et al., 2019; Song et al.,
2018; Dai et al., 2020; Zhang et al., 2019a; Pu et al., 2018)
constantly update model parameters by learning the CNN
features from previous frames. The MDNet approaches (Nam
& Han, 2016; Jung et al., 2018) consider tracking as a classifi-
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cation task to distinguish the target and background. During
inference, they incrementally collect positive and negative
samples to enhance the discriminative ability of the classifier.
In this work, we evaluate our attack and defense approaches
on five our representative state-of-the-art trackers, including
one Siamese-based tracker (Li et al., 2019) without online
updates, one anchor-free tracker (Guo et al., 2020a), one
classification-based tracker (Jung et al., 2018) with online
updates, one discriminative-based tracker (Bhat et al., 2019)
and one transformer-based tracker (Chen et al., 2021). We
aim to demonstrate the general effectiveness of adversarial
attack and defense on diverse architecture trackers.

2.2 Adversarial Attack

Recent studies (Goodfellow et al., 2015; Szegedy et al.,
2014) demonstrate that deep networks are vulnerable to
adversarial examples. Despite state-of-the-art performance
on natural input images, the pre-trained networks perform
poorly given intentionally generated adversarial examples.
Existing adversarial attack methods mainly fall into white-
box and black-box attacks. The deep models are assumed
to be known in white-box attacks (Goodfellow et al., 2015;
Moosavi-Dezfooli et al., 2016), whereas they are unknown in
black-box attacks (Ilyas et al., 2018; Liu et al., 2017). Specif-
ically, black-box attacks are categorized into the following
types, including transferable attacks (Sun et al., 2023; Dong
et al., 2019a), model stealing (Sun et al., 2022; Zhou et al.,
2020; Wang et al., 2021b), gradient estimation (Brendel et
al., 2018; Cheng et al., 2018), etc. In addition to algorithmic
attacks, physical attack methods generate real-world objects
to lead models to misclassification. These are typically use-
ful to examine the robustness of automotive driving in road
sign scenarios (Kurakin et al., 2017; Eykholt et al., 2018;
Wiyatno & Xu, 2019; Ding et al., 2021). In object tracking,
some recent works (Yan et al., 2020; Jia et al., 2020; Chen
et al., 2020a; Liang et al., 2020; Guo et al., 2020a, 2021,
Jia et al., 2021) have explored the vulnerability of deep net-
works. Yan et al. (2020) propose a cooling-shrinking loss to
generate imperceptible noises, which cool hot regions on the
heatmaps and shrink the predicted bounding box. Chen et al.
(2020a) present a one-shot adversarial attack method by only
adding the perturbations into the template branch. It opti-
mizes the confidence and feature loss and leverages the dual
attention mechanisms. SPARK (Guo et al., 2020b) utilizes
past fewer frames to generate an incremental perturbation to
achieve targeted attacks. On the other hand, FAN (Liangetal.,
2020) trains an end-to-end network to integrate the drift loss
and the feature loss to attack the Siamese-based tracker, and
(Wiyatno & Xu, 2019) propose a physical adversarial attack
to generate adversarial textures to drift the targeted tracker.
ABA (Guoetal., 2021) formulates the adversarial attack with
the motion blur pattern, causing a significant drop in tracking
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accuracy. In this work, we consider multiple frames and pro-
pose a temporal motion attack. Our method performs well on
white-box attacks and yields favorable attack transferability
to other backbones, targeted trackers, and black-box attacks.

2.3 Adversarial Defense

Defending DNNs against adversarial attacks can be regarded
as robustly learning DNNs with adversarial examples. Exist-
ing adversarial defense methods can be mainly categorized
into two classes. The first class of methods is based on
adversarial training. Tramer et al. (2018) propose adver-
sarial training by adding the adversarial examples into the
original training dataset to retrain the model. This defense
method is effective against the adversarial attack that gener-
ates the adversarial examples. Madry et al. (2018) consider
adversarial training as a min-max optimization to train the
model solely with adversarial examples. Introducing adver-
sarial examples into the training process generally causes a
performance drop. This is typically a trade-off between one
model’s performance and robustness. In (Xie et al., 2019)
Xie et al. propose a feature denoising module to enhance
the model robustness and even improve its original perfor-
mance slightly. Numerous attempts have been made to purify
adversarial examples to defend against the attack. From this
perspective, adversarial examples produce noise on features
to distract the network inference process. In Liao et al. (2018),
denoising algorithms are proposed to eliminate the effect
of noise. In addition, images are transformed to be non-
differentiable in Guo et al. (2018) to resist adversarial attacks.
Xieetal. (2017a) use random resizing and padding during the
inference time to mitigate adversarial effects. Unlike existing
attack and defense methods, we attack deep trackers’ classi-
fication and regression modules to decrease accuracy. Then,
we gradually estimate adversarial perturbations and elimi-
nate their effect on input images without modifying existing
deep trackers.

3 Proposed Algorithms

In this section, we present how to perform adversarial attacks
and defense for visual tracking. Adversarial attacks include
gradient-based white-box attacks, transfer-based black-box
attacks, and universal attacks. Given an input video sequence
and a labeled bounding box in the initial frame, we generate
adversarial examples spatiotemporally to decrease tracking
accuracy. Meanwhile, our defense algorithm learns to esti-
mate unknown adversarial perturbations and eliminate their
effect from input sequences. Figure2 illustrates the over-
all variation of adversarial perturbations during adversarial
attack and defense.
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Different iterations during adversarial attack

Adversarial example iter=2

Fig.2 Variation of adversarial perturbations during attack and defense.
The 3D response map above the image represents the difference between
the clean image and the adversarial example at the current iteration. In

3.1 Generating Adversarial Examples

We generate adversarial perturbations based on deep track-
ers’ input frame and output response, i.e., classification
scores or regression maps. These perturbations are then
added to the input frame to generate adversarial examples.
Deep trackers usually employ a DNN architecture contain-
ing two branches in the tracking-by-detection framework. In
the first branch, the sampled candidate regions are classified
as either the target or background, while another branch is
regressed for precise localization. We denote an input frame
by 1, a candidate number by N, a binary classification loss by
L., abounding box regression loss by L, and correct classi-
fication label and regression label by p. and p,, respectively.
Both labels p. and p, are predicted by the tracking result
S'=! from the last frame, while S! is the ground-truth anno-
tation in the initial frame. The original loss function of the
tracking-by-detection network is:

N
LU,N,0) = Z[Lc(ln’ Des 0) + A - Ly (Iy, pr, 0)], (D

n=1

where I, is one candidate region in the image, X is a fixed
weight parameter, and 6 denotes the network parameters to
be optimized during training.

When generating adversarial perturbations, we expect the
networks to make inaccurate inferences. We create a pseudo
classification label p} and a pseudo regression label p*. The

iter=5

iter=8 Restored image

adversarial attacks, the perturbations increase along with training iter-
ations. In adversarial defense, the perturbations decrease when training
iteration increases

adversarial loss is set to make L. and L, the same when we
use correct and pseudo labels. The adversarial loss can be
formulated as:

N
Laa(I, N, 0) =Y {[Le(I, pe, 0) = Le(l, p, 0)]
n=1
+ A [Ly(y, pr,0) — Lr(I, P:, N1},
)

where 6 is fixed because the network is in the inference stage.
The adversarial loss L4, reflects the loss similarity between
using correct and pseudo labels. When minimizing L4y, the
predictions will be close to pseudo labels, and the perfor-
mance will degrade rapidly.

We set pseudo labels specifically for each branch. In p},
two elements (i.e., 0 and 1) indicate the probabilities of the
input belonging to the target and background. We set p} by
reversing the elements of p. to confuse the classification
branch. On the other hand, p, consists of four elements (x,,
Yr, Wy, h,) representing the target location. We set p* by
adding a random distance offset and a random scale variation
to p,. Each element of p} can be written as:

x: = X + Soffset

y: = yr + Soffset
w: = W, * Sscale

h: = hy * Sscale, (3)
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where Soffset and Sgcqle indicate the random distance offset
and random scale variation, respectively.

After computing the adversarial loss using Eq. 2, we take
partial derivatives of the adversarial loss concerning input /.
Formally, the partial derivative R is computed as:

_8»Cadv
Al

R “
To reduce outlier effects, we pass R into a sign function.
Given an input frame I, we use M iterations to generate the
final adversarial perturbations. The output of the last iteration
is added into the input frame, which can be written as follows:

Int1 = Iy +a - sign(Ry), )
where o = ;7 is a weight parameter, € is the maximum
value of the perturbations, m indicates the iteration index,
I, is the input frame for the m-th iteration, M denotes the
final iteration number, and « - sign(R;,) is the perturbations
generated during the m-th iteration. After M iterations, the
final adversarial example is /;.

As video frames are temporally coherent, we consider the
adversarial attack in the spatiotemporal domain. When an
input video sequence has T frames, we use the learned per-
turbations in the last frame as initialization for the current
frame. Specifically, for the ¢-th frame, we use perturbations
from the last frame to initialize I, which can be written as:

I=1+uy;' -1, (6)

where 7}, ' — I{~" is the perturbation from the last frame.
We gradually update I’ by using Eq. 5 to generate the final
perturbations for the 7-th frame. Algorithm 1 summarizes the
main steps for generating adversarial examples. Note that
we use the IoU metric (Ren et al., 2016) to assign labels for
candidates.

3.2 Transferring Attacks

In contrast to white-box attacks, black-box attacks have
no access to the architecture and parameters of the vic-
tim model. For visual object tracking, IoU Attack (Jia et
al., 2021) explores the decision-based black-box attacks
to iteratively increase the noise according to the feedback
of the targeted models. However, it requires consistently
querying the victim model to calculate the IoU scores and
adjust the directions and magnitudes of noise, which leads to
heavy and time-consuming computations. In this paper, we
adopt transfer-based attacks as an effective black-box attack
method without the feedback of target models. Specifically,
we implement our attack method on the victim tracker to gen-
erate the adversarial perturbations and transfer them to the
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Algorithm 1: Adversarial Example Generation
Input:

input video V with T frames;

target location S 1.

Qutput: adversarial examples of 7' frames;

fort =2to T do

Get current frame /{;

if ¢ # 2 then

| Update I{ via Eq. 6;

end

form =1to M do
Create p. and p, via loU ratios between candidates and
target location §'~!;
Create p} by reversing elements of p.;
Create p; via Eq. 3;
Generate adversarial loss via Eq. 2;
Update I}, via Eq. 5;

end

return I},;

end

targeted tracker frame-by-frame. When generating the trans-
ferable adversarial perturbations, we remove the original sign
function of gradients in Eq. 5 and calculate the continuous
perturbations in the direction of loss gradients as:

Eadv

G=VLuw ——,
NV Laanl 3

(N

where V is the partial derivative of input /. Instead of using
the sign function that destroys the internal distributions of
loss gradient on different pixels, we compute the £> norm to
regularize the loss gradient and maintain its weights. In addi-
tion, the temporal consistency between frames also benefits
the attack transferability of perturbations for tracking. Thus,
we fuse the perturbations from previous frames as follows:

G'=G'+6- (G +5-(G248-(G' 3 +---8-G”)), (8)

where ¢ is the frame index, and § is a hyper-parameter to
adjust the weight of adversary from various frames tempo-
rally. We then transfer the generated adversarial perturbations
frame-by-frame and use Trunc(I’ + G") to truncate every
pixel value by [0, 255].

3.3 Universal Adversarial Perturbation

The above-described attack belongs to image-dependent
methods that generate individual perturbations for each
frame. Although the attack significantly degrades track-
ing performance, it relies heavily on image content. The
attack process has a high computational load, resulting in
weak transferability and slow attack speed. Motivated by
UAP (Moosavi-Dezfooli et al., 2017) for image classifica-
tion and IoU attack (Jia et al., 2021), we present an efficient
attack method that carries out universal adversarial perturba-
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Image-dependent perturbation

Fig.3 The comparison of image-dependent perturbation and universal
adversarial perturbation

tions (UAP), which can be applied to all frames in tracking
videos. Different from UAP (Moosavi-Dezfooli et al., 2017),
which focuses on identifying the boundaries of different
classes and finding a position that misclassifies more images,
our method is designed for visual tracking by employing
our adversarial attack losses that involve both classification
and regression branches simultaneously. The crafted UAP
is generated offline by continuously querying the training
dataset. It can obtain independent data distribution and is
suitable to apply to any video frame. Furthermore, the attack
speed maintains its original tracking speed since only a few
additional operators are involved. The differences between
image-dependent perturbations and universal adversarial per-
turbations are illustrated in Fig. 3.

During the training process of UAP, the adversarial loss
is consistent with Eq. 2. When computing the perturbation
gradient, we maintain the distribution of gradients from each
training pair following the transferring attack in Eq. 7. First,
we initialize the UAP with the first training pair. In the follow-
ing pair, we update the perturbations of UAP on the current
pair. Specifically, we compute the IoU score between the
current result S and grounding truth label B™. If the IoU
score is less than a predefined threshold, it implies that the
UAP has already drifted the tracker successfully in the cur-
rent frame, and we skip this frame. Otherwise, we update the
UAP denoted by adding the generated perturbations from
current frames as follows:

U =u""'+¢.G, ©)

where U/ and G denote the perturbations of the UAP and
the current frame, respectively, and ¢ is a weight parameter.

Algorithm 2: Universal Adversarial Perturbation
Input:

input M training pairs;

grounding truth boxes B™;

initialized perturbation 2/°

Qutput: universal adversarial perturbation (UAP);

form =1to M do

Add the UAP &/~ on current frame I™;

Get the tracking result §";

Calculate ToU score between S™ and B™;

if Siou < S then
Generate adversarial loss via Eq. 2;
Calculate the adversarial perturbations via Eq. 7;
Update the UAP /™ via Eq. 9;

else

|  Skip this frame;

end

end

return ¥

We repeat the above process and obtain final outputs /™.
The whole process of generating the universal adversarial
perturbation is summarized in Algorithm 2.

3.4 Adversarial Defense

We propose an adversarial defense method against adversar-
ial attacks for object tracking. The motivation to disrupt the
distribution of adversarial perturbations is intuitive. From
Eq. 4, we observe that perturbations originate from par-
tial derivatives. Instead of adding perturbations to the input
frame to decrease tracking accuracy, we gradually estimate
the potential unknown perturbations and subtract them from
the input frame. Although the gradients from defense are
inconsistent with those from attack, they are still effective
in mitigating the impact of adversarial perturbations. As a
result, the effect of unknown perturbations will be eliminated,
helping DNNs make correct inferences and restoring track-
ing performance. Similar to our attack, we defend adversarial
examples without updating the networks.

Given an input frame / with unknown adversarial per-
turbations, we generate correct and pseudo labels according
to the predicted location S'~! from the previous frame. The
label generation process is similar to that in Sect. 3.1 except
that the candidates during defense are resampled based on the
adversarial examples. We then estimate the adversarial loss
using Eq. 2 and compute the partial derivatives via Eq. 4.
We apply partial derivatives R on the input frame I via the
following operation:

Iny1 = Iy — Truncg.ge(—a.41(B - R), (10)

where § is a weight parameter, Trunc(-) is a truncation func-
tion to constrain the values of 8 - R within the range between
—¢& and &. The parameter & resembles to the parameter o
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Algorithm 3: Adversarial Example Defense
Input:

input video V with T adversarial examples;

target location S 1.

Qutput: adversarial examples of 7' frames;

fort =2to T do

Get current frame /{;

if ¢ # 2 then

| Update I{ via Eq. 11;

end

form =1to M do
Create p. and p, via loU ratios between candidates and
target location §'~!;
Create p}: by reversing elements of p.;
Create p; via Eq. 3;
Generate adversarial loss via Eq. 2;
Update I}, via Eq. 10;

end

return I},;

end

in Eq. 5. Since the perturbation is unknown during defense,
we empirically set different values for these two parameters
for various attacks. When the input videos contain 7 frames,
we transfer the perturbations from the last frame to the cur-
rent frame as initialization. For the ¢-th frame, we update it
initially as:

=1 —y-u~" =M, (11

where y is a weight parameter. The pseudo code of adver-
sarial defense is shown in Algorithm 3.

Visualizations. We utilize the SiamRPN++ (Li et al.,
2019) to visualize how adversarial perturbations vary during
different iterations in Fig. 2. Given an input frame, we visual-
ize the adversarial perturbations during attacks. Along with
the training iterations, the variation of perturbations increases
as well. The adversarial examples lead SiamRPN++ to
drift rapidly. When defending this adversarial example, we
observe that the variation of the perturbations decreases when
training iteration increases. It indicates that the proposed
defense method effectively estimates and excludes the per-
turbations, which helps alleviate performance drops caused
by adversarial attacks.

4 Experimental Results

In this section, we first present the implementation details of
the proposed method and introduce the deployment of deep
trackers during experiments. Then, we evaluate the attack
and defense methods on benchmark datasets. We measure the
attack transferability among different backbones and trackers
as black-box attacks. To improve the attack speed, we train
universal adversarial perturbations and add them to all frames
to evaluate the attack performance. In addition, we conduct
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ablation studies on the variants of our attack method. Finally,
we compare our attack and defense with existing methods.

4.1 Implementation Details

We apply our methods to five representative deep trackers
covering a variety of tracking architectures: SiamRPN++ (Li
etal.,2019), SiamCAR (Guo et al., 2020a), RT-MDNet (Jung
et al., 2018), DiIMP (Bhat et al., 2019), and TransT (Chen et
al., 2021). The maximum variation value of each pixel in the
perturbations is set to 10 (i.e., € = 10) for attacks and set to
5 (i.e., € = 5) for defense. The perturbations are quantized
to integers for attack and defense to preserve the image qual-
ity. When computing IoU ratios between candidates and the
target location S;_1, we follow the threshold setting of track-
ers to distinguish the positive and negative samples. Note
that deep trackers’ parameters remain fixed during adversar-
ial attacks and defense. All experiments are performed on
a PC with an Intel i9 3.6GHz CPU and an NVIDIA RTX
2080Ti GPU. The source codes of the proposed methods are
available at https://vision.sjtu.edu.cn/rtaa/rtaa.html.

4.2 Deployment of Deep Trackers

To illustrate the generality of our methods, we apply the pro-
posed adversarial attack and defense to five state-of-the-art
trackers (Li et al., 2019; Guo et al., 2020a; Jung et al., 2018;
Bhat et al., 2019; Chen et al., 2021). From the perspective of
online updates, we consider RT-MDNet (Jung et al., 2018)
and DiMP (Bhat et al., 2019) as representative online track-
ers, while other trackers utilize offline pretrained models.
We select SiamRPN++ (Li et al., 2019) and SiamCAR (Guo
et al., 2020a) to represent the anchor-based and anchor-free
trackers. In addition, we adopt DiMP (Bhat et al., 2019) as an
instance of discriminative-based tracker and TransT (Chen et
al., 2021) as an illustration of transformer trackers.

SiamRPN++. There are two output branches in
SiamRPN++ for classifying and regressing proposals. Dur-
ing tracking, SiamRPN++ does not perform online updates.
We use Algorithm 1 and Algorithm 3 to generate and defend
adversarial examples when processing each frame. As the
inputs contain a template and search patch, we take par-
tial derivatives concerning the search patch when computing
Eq. 4 for both attack and defense.

SiamCAR. The SiamCAR framework consists of one
Siamese subnetwork for feature extraction and one classifica-
tion-regression subnetwork for bounding box prediction. Dif-
ferent from SiamRPN++, SiamCAR is an anchor-free tracker
without region proposal networks. We use the adversarial
loss’s original setting during training to adopt the cross-
entropy loss for classification and the IoU loss for regression
in Eq. 4. When processing each frame, we use Algorithm 1
and Algorithm 3 to perform adversarial attack and defense.
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Fig. 4 Tracking performance of adversarial attack and defense methods on the OTB100 dataset (Wu et al., 2015). ‘Att’ and ‘Def” denote the
adversarial attack and defense, respectively, and ‘Random’ denotes random perturbations

RT-MDNet. The CNN module in RT-MDNet is only for
classification. RT-MDNet online updates its model during
tracking by collecting samples from previous frames. We
generate adversarial examples and perform prediction and
model updates. This configuration aims to analyze whether
online updates effectively defend adversarial examples. We
generate and defend adversarial examples using Algorithm 1
and Algorithm 3, except that we remove the regression terms
when computing Eq. 2.

DiMP. Similar to the pipeline of Discriminative Corre-
lation Filter (DCF), DiMP proposes an end-to-end online
update tracking architecture. It enhances the discriminative
capability to handle target and background appearance infor-
mation with CNN features. For adversarial loss, we follow its
original discriminative learning loss. Similarly, we employ
Algorithm 1 and Algorithm 3 to implement the adversarial
attack and defense.

TransT. Inspired by Transformer (Vaswani et al., 2017),
TransT presents an attention-based feature fusion network
with the architecture of Transformer. TransT comprises the
designed attention-based fusion mechanism and the classi-
fication and regression branches. For adversarial loss, we
adopt its original setting, which uses binary cross-entropy
loss for classification and combines the generalized IoU
loss (Rezatofighi et al., 2019) and £; norm loss for regres-
sion. The processes of attack and defense follow Algorithm 1
and Algorithm 3.

4.3 Benchmark Datasets

OTB100. There are 100 video sequences in the OTB 100 (Wu
etal., 2015) dataset with substantial target variations. We use
the one-pass evaluation (OPE) with success plots for exper-
iments. We first report the tracking results on the original
dataset to evaluate our adversarial attack and defense meth-
ods. Next, we attack various trackers by adding adversarial
perturbations to input video sequences. Meanwhile, we com-
pare the attack performance by adding random perturbations
containing the same variations as those of adversarial pertur-
bations. Figure4 illustrates that our attack method reduces
the AUC scores of SiamRPN++ from 0.695 to 0.038 (i.e.,

a 94.5% decrease); SiamCAR from 0.697 to 0.126 (i.e., an
81.9% decrease); RT-MDNet from 0.643 to 0.131 (i.e., a
79.6% decrease); DiMP from 0.686 to 0.064 (i.e., a 90.7%
decrease); and TransT from 0.689 to 0.164 (i.e., a 76.2%
decrease). The trackers under adversarial attacks perform
significantly worse than those under random perturbations.
This suggests the effectiveness of our adversarial attack
method on various types of targeted trackers. On the other
hand, we implement the proposed defense method to subtract
adversarial perturbations and restore the tracking perfor-
mance. The AUC scores in success plots are restored to
0.413 for SiamRPN++, 0.353 for SiamCAR, 0.420 for RT-
MDNet, 0.397 for DiMP, and 0.384 for TransT, respectively.
This demonstrates that our defense method can effectively
remove the perturbations to restore tracking performance. In
addition, we apply our defense method to original tracking
sequences and slightly improve the AUC scores for all track-
ers. These results show that perturbations exist in real-world
scenarios during the image formation process (e.g., camera
sensor noise and transformation from optical perception to
digital storage). The proposed defense method effectively
estimates these naturally existing perturbations and elimi-
nates their effects.

UAV123. The UAV 123 (Mueller et al., 2016) dataset con-
tains 123 sequences with more than 110K frames, which are
captured from low-altitude unmanned aerial vehicles. We
adopt the success and precision plots to evaluate the per-
formance. Figure5 illustrates the success plots of these five
trackers. Under the adversarial attacks, the AUC scores drop
dramatically from 0.606 to 0.043 (i.e., a 92.9% decrease) for
SiamRPN++; from 0.621 to 0.052 (i.e., a 91.6% decrease)
for SiamCAR; from 0.512 to 0.079 (i.e., an 84.6% decrease)
for RT-MDNet; from 0.646 to 0.051 (i.e., a 92.1% decrease)
for DiMP; and from 0.679 to 0.170 (i.e., a 75.0% decrease)
for TransT. For adversarial defense, the AUC scores are
restored to 55.0% for SiamRPN++; 49.0% for SiamCAR;
81.8% for RT-MDNet; 66.3% for DiMP; and 47.6% for
TransT of their original performance since the target objects
on UAV 123 mostly undergo significant shape changes. These
results demonstrate the effectiveness of the proposed attack
and defense method.
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Fig.5 Tracking performance of adversarial attack and defense methods on the UAV123 dataset (Mueller et al., 2016). ‘Att’ and ‘Def” denote the
adversarial attack and defense, respectively, and ‘Random’ denotes random perturbations
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LaSOT. LaSOT (Fan et al., 2019) is a large dataset with
1400 videos. The average length of video sequences is more
than 2,500 frames, which is longer than most datasets and
more challenging. We adopt the success rate as our eval-
uation metric. Figure 6 illustrates the tracking performance
of our adversarial attack and defense methods on LaSOT.
The tracking performance drops dramatically after attacks
for both trackers, where the success rates are reduced from
0.494t00.038 (i.e., a 92.3% decrease) for SiamRPN++; from
0.516 to 0.163 (i.e., a 68.4% decrease) for SiamCAR; from
0.325t00.113 (i.e., a 65.2% decrease) for RT-MDNet; from
0.560 to 0.131 (i.e., a 76.6% decrease) for DiMP; and from
0.654 to 0.148 (i.e., a 77.4% decrease) for TransT. After
applying our defense method to the adversarial examples, the
AUC scores are improved to 81.2% for SiamRPN++; 54.7%
for SiamCAR; 55.2% for RT-MDNet; 54.8% for DiMP; and
48.3% for TransT of their original performance. Our defense
method helps these trackers counter adversarial attacks. In
addition, our defense method slightly improves the tracking
performance when deploying on the original sequences.

VOT datasets. There are all 60 challenging video sequen-
ces in the VOT2019 (Kristan et al., 2019), VOT2018(Kristan
et al., 2018) and VOT2016 (Kristan et al., 2016) datasets.
The VOT toolkit reinitializes the tracker if it loses the target
object during five consecutive frames. The evaluation met-
rics of VOT are accuracy, robustness, and expected average
overlap (EAO). The accuracy represents the average overlap
ratio, and the number of reinitializations measures robust-
ness. EAO measures trackers’ overall performance. Table 1
illustrates our attack and defense methods for SiamRPN++,
SiamCAR, RT-MDNet, DiMP, and TransT for three VOT
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datasets. Our attack method reduces the EAO scores by about
60 % for all five trackers on three VOT datasets. When apply-
ing our defense method, trackers’ performance improves to
about 50% of their original EAO scores. For VOT2019, our
attack method degrades the EAO scores from 0.287 to 0.093
(i.e.,a67.6% decrease) for SiamRPN++; from 0.283t0 0.115
(i.e., a 59.3% decrease) for SiamCAR; from 0.153 to 0.084
(i.e., a 45.1% decrease) for RT-MDNet; from 0.328 to 0.101
(i.e., a 69.2% decrease) for DiMP; and from 0.277 to 0.096
(i.e., a 65.3% decrease) for TransT. Compared to the attack
by adding the same level of random noise, our attack method
significantly degrades the tracking performance.

When applying our defense method, the performance
of trackers is improved to 66.9% for SiamRPN++; 55.1%
for SiamCAR; 72.5% for RT-MDNet; 53.0% for DiMP;
and 50.5% for TransT of their original EAO scores. For
VOT2018, the EAO scores are 0.082 for SiamRPN++; 0.104
for SiamCAR; 0.076 for RT-MDNet; 0.089 for DiMP; and
0.090 for TransT, when under attacks. By integrating our
defense method, the EAO scores of SiamRPN++, SiamCAR,
RT-MDNet, DiMP, and TransT are improved to 0.209, 0.136,
0.110, 0.203, and 0.121, respectively. For VOT2016, our
adversarial attack algorithm reduces the EAO scores by over
60% for all five trackers. With the deployment of the defense
method on the adversarial examples, the accuracy of EAO is
improved to 39.7% for SiamRPN++; 53.8% for SiamRPN++;
60.8% for RT-MDNet; 56.6% for DiMP; and 50.7% for
TransT of their original performance. The performance
degradation and improvement indicate the effectiveness of
our adversarial attack and defense methods on various track-
ers. Due to the reinitialization scheme in VOT, we observe
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Table 1 Tracking performance of adversarial attack and defense methods on the VOT datasets (Kristan et al., 2019, 2018, 2016)

Dataset VOT2019

VOT2018

VOT2016

Accuracy 1 Robustness | EAO 1t Accuracy 1 Robustness | EAO 1

Accuracy 1 Robustness | EAO 1

SiamRPN++(Li et al., 2019)  0.594 0.467 0.287  0.601 0.234 0415 0.642 0.196 0.464
SiamRPN++(Random) 0.574 0.625 0.236  0.581 0.412 0.284  0.637 0.298 0.360
SiamRPN++(Att) 0.502 2.017 0.093  0.500 1.681 0.082  0.485 1.664 0.084
SiamRPN++(Att+Def) 0.545 0.813 0.192  0.585 0.632 0.209  0.597 0.653 0.184
SiamRPN++(Def) 0.596 0.426 0294 0.599 0.225 0413 0.637 0.158 0472
SiamCAR(Guo et al., 2020a) 0.593 0.461 0.283  0.589 0.281 0.354  0.633 0.219 0.420
SiamCAR(Random) 0.581 0.527 0262  0.572 0.365 0.304  0.639 0.252 0.374
SiamCAR(ALtt) 0.570 2.047 0.115 0574 1.723 0.104  0.602 1.221 0.136
SiamCAR(Att+Def) 0.611 1.344 0.156  0.612 1.199 0.136  0.640 0.662 0.226
SiamCAR(Def) 0.594 0.431 0294 0.589 0.258 0375 0.630 0.186 0.431
RT-MDNet(Jung et al., 2018) 0.527 0.873 0.153 0533 0.567 0.176  0.567 0.196 0.370
RT-MDNet(Random) 0.523 1.144 0.139  0.503 0.871 0.137  0.550 0.452 0.235
RT-MDNet(Att) 0.462 1.986 0.084 0475 1.611 0.076  0.469 0.928 0.128
RT-MDNet(Att+Def) 0.524 1.349 0.111 0515 1.021 0.110  0.531 0.494 0.225
RT-MDNet(Def) 0.551 0.863 0.168  0.529 0.538 0.179  0.540 0.168 0.374
DiMP(Bhat et al., 2019) 0.561 0.302 0.328  0.575 0.174 0412 0.615 0.145 0.461
DiMP(Random) 0.572 0.352 0.296  0.584 0.192 0373  0.588 0.168 0.406
DiMP(Att) 0.506 1.766 0.101  0.519 1.527 0.089  0.548 1.678 0.077
DiMP(Att+Def) 0.569 0.833 0.174  0.584 0.553 0.203  0.603 0.405 0.261
DiMP(Def) 0.554 0.277 0336 0.566 0.155 0430 0.590 0.140 0.470
TransT(Chen et al., 2021) 0.600 0.502 0277  0.596 0.370 0.287  0.634 0.252 0.367
TransT(Random) 0.595 0.627 0.244  0.601 0.482 0.243  0.656 0.396 0.294
TransT(Att) 0.595 2212 0.096  0.586 1.709 0.090 0.621 1.142 0.136
TransT(Att+Def) 0.575 1.475 0.140  0.575 1.302 0.121  0.621 0.774 0.186
TransT(Def) 0.595 0.451 0.287 0.590 0.332 0292 0.633 0.242 0.380

The best tracking performance results are given in bold

‘Att” and ‘Def” denote the adversarial attack and defense, respectively, and ‘Random’ denotes random perturbations

that EAO and robustness scores decrease dramatically dur-
ing attacks, but the accuracy scores do not vary much. After
applying our defense method, the robustness and EAO scores
are primarily improved. Furthermore, when applying the pro-
posed defense to the original sequences, our defense method
slightly improves performance when the baseline trackers are
not under attack.

4.4 Transferability Among Different Backbones

To evaluate the transferability among different backbone
modules, we choose SiamRPN++ with AlexNet, MobileNet,
and ResNet for experiments. Specifically, we generate adver-
sarial examples from one backbone of SiamRPN++ and
transfer them into the other two backbones. Furthermore,
we conduct the experiments by injecting the same level of
random noise for comparison. Table 2 shows the attack trans-
ferability for SiamRPN++ (Li et al., 2019) with AlexNet,
MobileNet and ResNet on six benchmark datasets.

VOT datasets. Trackers with all backbones perform
favorably on the original sequences. In VOT2019,
SiamRPN++ with ResNet has a more complicated archi-
tecture than the other two networks, causing a 72.2% drop
in EAO (i.e., from 0.291 to 0.081) on MobileNet and a
52.3% drop in EAO (i.e., from 0.260 to 0.124) on AlexNet.
The perturbations from MobileNet and AlexNet have similar
transferability on ResNet. In VOT2018, the transferable per-
turbations from ResNet degrade the performance of other
backbones more significantly, which achieves an 84.1%
decrease in EAO (i.e., from 0.410 to 0.065) for MobileNet
and a 67.0% decrease in EAO (i.e., from 0.352 to 0.116)
for AlexNet. In VOT2016, the perturbations from ResNet
obtained over 50% drops in EAO for both AlexNet and
MobileNet. In addition, the transferable adversarial perturba-
tions from all backbones yield stronger attacks than random
noises on all three VOT datasets.

Other datasets. Table 2 demonstrates the transferring
attack results on the OTB100 (Wu et al., 2015), UAV123
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Table 2 Transferability of the proposed method across different back-
bones on multiple datasets (Kristan et al., 2019, 2018, 2016; Wu et al.,
2015; Mueller et al., 2016; Fan et al., 2019)

Dataset Tracker ResNet MobileNet AlexNet
VOT2019 Original 0.287 0.291 0.260
Random 0.236 0.147 0.178
ResNet - 0.081 0.124
MobileNet 0.165 - 0.132
AlexNet 0.163 0.099 -
VOT2018 Original 0.415 0.410 0.352
Random 0.284 0.137 0.189
ResNet - 0.065 0.116
MobileNet 0.155 - 0.117
AlexNet 0.158 0.086 -
VOT2016 Original 0.464 0.454 0.393
Random 0.360 0.206 0.271
ResNet - 0.090 0.192
MobileNet 0.218 - 0.202
AlexNet 0.242 0.127 -
OTB100 Original 0.695 0.658 0.666
Random 0.667 0.531 0.611
ResNet - 0.251 0.546
MobileNet 0.531 - 0.571
AlexNet 0.527 0.299 -
UAV123 Original 0.606 0.602 0.579
Random 0.596 0.530 0.571
ResNet - 0.288 0.476
MobileNet 0.532 - 0.505
AlexNet 0.504 0.355 -
LaSOT Original 0.494 0.450 0.434
Random 0.462 0.319 0.392
ResNet - 0.288 0.467
MobileNet 0.532 - 0.505
AlexNet 0.504 0.355 -

The best attack results are given in bold

(Mueller et al., 2016) and LaSOT (Fan et al., 2019) datasets.
In OTB100, the perturbations from MobileNet and AlexNet
degrade from 0.695 to 0.531 and 0.527 on ResNet, respec-
tively. The AUC scores of SiamRPN++ with MobileNet are
reduced to 0.299 with AlexNet and 0.251 with ResNet. The
transferring attack with MobileNet and ResNet decreases
from 0.666 to 0.571 and 0.546 on AlexNet. In UAV123, the
adversarial perturbations generated by ResNet also perform a
more aggressive attack than the other two backbones, which
yields a 52.2% drop (i.e., from 0.602 to 0.288) on MobileNet
and a 17.8% drop (i.e., from 0.579 to 0.476) on AlexNet
for AUC scores. In LaSOT, the AUC scores of all backbones
drop by over 30% after applying our transferring attack. Gen-
erally, a backbone with complex network structures yields
stronger attack transferability than simple structures. It can

@ Springer

be explained by the fact that complex network structures (e.g.,
ResNet) learn more powerful representations. Our attack
method is highly transferable to other backbones as a black-
box attack and attacks the trackers more aggressively than
the same level of random noise for all backbones.

4.5 Transferability Among Different Trackers

We conduct experiments to evaluate the transferability of
our attack method among different targeted trackers. We use
SiamRPN++ (Lietal., 2019) as our victim model and transfer
the generated adversarial examples to other different types
of trackers, SiamCAR (Guo et al., 2020a), RT-MDNet (Jung
et al., 2018), DiMP (Bhat et al., 2019), and TransT (Chen et
al., 2021). Similarly, we inject the same random noise level
into the targeted trackers for comparisons. Table 3 reports the
attack transferability across five diverse trackers on the six
datasets (Kristan et al., 2016, 2018, 2019; Wu et al., 2015;
Mueller et al., 2016; Fan et al., 2019).

VOT datasets. After transferring attack, the EAO scores
in VOT2019 are reduced by 50.2% (i.e., from 0.283 to 0.141)
for SiamCAR; 21.6% (i.e., from 0.153 to 0.120) for RT-
MDNet; 48.6% (i.e., from 0.329 to 0.169) for DiMP; and
54.2% (i.e., from 0.277t00.127) for TransT. In VOT2018, the
transferring attack from SiamRPN++ decreases from 0.354
to 0.128 (i.e., a 63.8% decrease) for SiamCAR; from 0.176
t0 0.119 (i.e., a 32.4% decrease) for RT-MDNet; from 0.412
to 0.167 (i.e., a 59.5% decrease) for DiMP; and from 0.287
to 0.121 (i.e., a 57.8% decrease) for TransT, respectively.
In VOT2016, the transferring attack from SiamRPN++ all
yields a significant decrease of over 40% in EAO scores
for SiamCAR, RT-MDNet, DiMP, and TransT. Despite the
various architectures and training approaches of the tar-
geted trackers, the adversarial examples generated by our
proposed attack method can still degrade the tracking per-
formance of these trackers noticeably. This suggests that
our attack method exhibits substantial attack transferability
across Siamese-based trackers, online-update trackers, dis-
criminative trackers, and transformer trackers. Additionally,
the attack performance is considerably better than the same
level of random noise.

Other datasets. Different from the reinitialization scheme
of VOT datasets, we utilize the AUC score as the eval-
uation metric to evaluate the attack transferability on the
OTB100 (Wu et al., 2015), UAV123 (Mueller et al., 2016)
and LaSOT (Fan et al., 2019) datasets. The AUC scores on
OTB100 are reduced significantly from 0.697 to 0.352 for
SiamCAR; from 0.643 to 0.516 for RT-MDNet; from 0.686
to 0.532 for DiMP, and from 0.690 to 0.577 for TransT.
Our transferring attack on UAV 123 degrades from 0.621 to
0.227 for SiamCAR; from 0.512 to 0.468 for RT-MDNet,
from 0.646 to 0.528 for DiMP, and 0.679 from 0.551 for
TransT. Also, the AUC scores on LaSOT drop from 0.516 to
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Table 3 Transferability of the

proposed method across Dataset Method SiamCAR RT-MDNet DiMP TransT
different targeted trackers on VOT2019 Original 0.283 0.153 0.328 0.277
multiple datasets (Kristan et al.,
2019, 2018, 2016; Wu et al., Random 0.262 0.139 0.296 0.244
2015; Mueller et al., 2016; Fan SiamRPN++ 0.141 0.120 0.169 0.127
etal., 2019) VOT2018 Original 0.354 0.176 0.412 0.287
Random 0.304 0.137 0.373 0.243
SiamRPN++ 0.128 0.119 0.167 0.121
VOT2016 Original 0.420 0.370 0.461 0.367
Random 0.374 0.235 0.406 0.294
SiamRPN-++ 0.161 0.218 0.208 0.191
OTB100 Original 0.697 0.643 0.686 0.690
Random 0.679 0.559 0.674 0.654
SiamRPN-++ 0.325 0.516 0.532 0.577
UAV123 Original 0.621 0.512 0.646 0.679
Random 0.605 0.491 0.636 0.633
SiamRPN-++ 0.227 0.468 0.528 0.551
LaSOT Original 0.516 0.325 0.560 0.654
Random 0.496 0312 0.551 0.560
SiamRPN-++ 0.288 0.268 0.379 0.435

The best attack results are given in bold

0.288 for SiamCAR; from 0.325 to 0.268 for RT-MDNet,
from 0.560 to 0.379 for DiMP, and from 0.654 to 0.435
for TransT, respectively. The transferable perturbations from
SiamRPN++ to SiamCAR exhibit better attack transferability
compared to the other two trackers, as they share a sim-
ilar architecture (i.e., Siamese-based tracker). Conversely,
the perturbations from SiamRPN++ to RT-MDNet result in
weak attacks due to the noticeable architecture gap between
SiamRPN++ and RT-MDNet. While SiamRPN++ adopts
a tracking-by-detection framework without online updates,
RT-MDNet considers tracking a binary classification task and
combines the online update module during inference. How-
ever, the generated perturbations from our method degrade
the tracking performance considerably compared to the ran-
dom noise. These results demonstrate the effectiveness of our
transferring attack method as black-box attacks.

4.6 Universal Adversarial Perturbation

Although the proposed attack method significantly degrades
tracker performance, the adversarial perturbation is com-
puted based on the content of each frame, resulting in
a high computational cost. A real-time attack speed can
yield a more aggressive threat to real applications. Inspired
by UAP (Moosavi-Dezfooli et al., 2017), we propose uni-
versal adversarial perturbations for tracking, which are
dependent on the content and can be trained offline with
training datasets. Once the universal adversarial perturba-
tion is trained, it can be directly applied to all frames during

inference. Therefore, the attack speed of universal attacks
almost maintains the original tracking speed of trackers.

In the experiments, we use SiamRPN++ (Li et al., 2019)
as a representative tracker to craft universal adversarial per-
turbations. We select 100 videos (~32.4K frames) randomly
from ImageNet VID (Russakovsky et al., 2015) and GOT-
10k (Huang et al., 2019) as training data. Note that the
variety of sampled training data has little impact on the
attack performance of universal adversarial perturbations.
We compare the attack performance of image-dependent
perturbations (I-DP) and universal adversarial perturbations
(UAP) on multiple datasets, as illustrated in Table 4. We
utilize the normalized precision rate in the LaSOT dataset.
Compared with the previous method, which generates indi-
vidual perturbations for each frame, the attack performance
of universal adversarial perturbations is slightly worse. How-
ever, they still significantly degrade the original tracking
performance by a large margin. Specificially, the EAO scores
on VOT2019 (Kristan et al., 2019), VOT2018 (Kristan et al.,
2018), and VOT2016 (Kristan et al., 2016) decrease to 0.101,
0.092 and 0.150 respectively. After our UAP attack, the ACU
scores on OTB100, UAV 123, and LaSOT were reduced to
0.530, 0.543, and 0.286. Meanwhile, the universal attack
speed is much faster than the image-dependent attack, as
only additional operations are introduced during inference.

To analyze the attack effects between I-DP and UPA,
we define “completely lose tracking” as the occurrence of
five consecutive frames in which the predicted boxes have
no overlap with the ground truth bounding boxes. The rea-
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Table4 Tracking performance with universal adversarial perturbations
on multiple datasets (Kristan et al., 2019, 2018, 2016; Wu et al., 2015;
Mueller et al., 2016; Fan et al., 2019)

Dataset Method Accuracy 1 Robustness 1 EAO ¢
VOT2019 Original ~ 0.594 0.467 0.287
I-DP 0.502 2.017 0.093
UAP 0.545 1.926 0.101
VOT2018 Original ~ 0.601 0.234 0.415
I-DP 0.500 1.681 0.082
UAP 0.551 1.587 0.092
VOT2016 Original ~ 0.642 0.196 0.464
I-DP 0.485 1.664 0.084
UAP 0.573 0.965 0.150
Dataset Method Succ. 1 Prec. 1 Speed 1
OTB100 Original ~ 0.695 0.905 75.3
I-DP 0.038 0.033 1.8
UAP 0.401 0.530 74.1
UAV123 Original 0.606 0.798 75.8
I-DP 0.043 0.069 1.7
UAP 0.409 0.543 74.7
LaSOT Original ~ 0.496 0.575* 753
I-DP 0.038 0.017* 1.7
UAP 0.247 0.286* 74.4

The best attack results are given in bold

Table 5 The averaged frame for completely lose tracking on the
OTB100 (Wu et al., 2015), UAV123 (Mueller et al., 2016) and
LaSOT (Fan et al., 2019) datasets

Dataset OTB100 UAV123 LaSOT
1-DP 34.12 87.22 60.70
UAP 316.31 507.01 606.51

son for choosing five consecutive frames is that when the
overlap ratio reaches zero initially, the tracker will recover
its performance if there are no adversarial perturbations in
the following frames. We count the completely lost tracking
frame for independent and universal attacks and report the
average number of frames in various datasets in Table 5.
We observe that the image-dependent attacks have more
attacking strength with lower attack speeds than the universal
adversarial attacks.

4.7 Ablation Studies

We analyze the effectiveness of each component of the pro-
posed method in this section. Specifically, we use
SiamRPN++ (Li et al., 2019) as a baseline and conduct
ablation studies on the OTB100 (Wu et al., 2015) and
UAV123 (Mueller et al., 2016) dataset.
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Fig. 7 Variants of adversarial attack on the OTB100 (Wu et al., 2015)
and UAV 123 (Mueller et al., 2016) dataset
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Fig. 8 Temporal consistency validation of adversarial attack and
defense on the OTB100 (Wu et al., 2015) and UAV 123 (Mueller et
al., 2016) dataset

Network branches. SiamRPN++ contains both the clas-
sification and regression branches. We first evaluate the
tracking performance on the original sequences as a base-
line. Then, we separately apply our attack method to the
classification and regression branches. When we attack the
regression branch, we analyze the offset and scale variation
effects. Finally, we combine both classification and regres-
sion attacks. Note that we denote cls as the attack on the
classification branch and reg as the attack on the regression
branch where offset and scale attacks exist. Figure 7 shows
the evaluation results where the attack on the regression
branch degrades the performance more significantly than
the attack on the classification branch. Combining attacks
on both branches yields the most significant degradation in
tracking performance.

Temporal consistency. We compare our attack and defense
with and without temporal consistency in Fig. 8. Our tem-
poral attack decreases the tracking accuracy more heavily
compared to the adversarial attack only on static images.
Meanwhile, the temporal initialization benefits the strength
of our attack more than our defense.

Sign function. We utilize the sign function for attack and
remove it for defense. In Fig. 9, we compare our attack and
defense with and without the sign function. The results indi-
cate that using the sign function or not for attacks has no
obvious effects on attack performance. However, removing
the sign function during defense yields better defense results
than retaining it, which illustrates the effectiveness of our
defense by removing the sign function.
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Fig. 11 Performance of different maximal value € of perturbations on
the OTB100 (Wuetal.,2015) and UAV 123 (Mueller et al., 2016) dataset

Iterations. We report the attack performance by increasing
the iteration number M. Figure 10 shows the variations of
success rates with different iterations M. Like other attacks,
more iterations yield robust attack performance but cost com-
putation and time.

Maximal value of perturbations. To illustrate the effect of
different magnitudes of perturbations, we limit the maximal
variation on each pixel for our attack. Figure 11 reports the
success rates with different maximum values €. Intuitively,
more significant perturbations cause larger performance
drops. We choose the maximal variation of perturbations €
as 10 for adversarial attacks, which are still not noticeable to
human observers.

4.8 Comparisons with Other Methods

We evaluate the proposed attack and defense against other
schemes under the same experimental settings for fair com-

parisons. We apply our attack method on SiamRPN++ (Li et
al., 2019) with ResNet as an illustration.

Existing adversarial attacks. The comparison with exist-
ing adversarial attacks is reported in Table 6. In the case of
the white-box attack, we initially compare our attack with the
attack methods against object detection, such as DAG (Xie et
al., 2017b) and Daedalus (Wang et al., 2021). These methods
lack the temporal attack, which results in limited attack per-
formance. We evaluate our attack with the attack methods
against tracking, which can be categorized as multi-object
tracking and single-object tracking. Adversarial attacks for
multiple object tracking (MOT) methods have been analyzed
in recent years (Lin et al., 2021), (Zhou et al., 2023; Jia et
al., 2019). TraSw (Lin et al., 2021) and F&F attack (Zhou
et al., 2023) focus on misleading the association process or
crafting unreliable detection boxes, which are not applicable
to our single object tracing task with only a single box per
frame. Hijacking (Jia et al., 2019) aims to attack detection
boxes and data association simultaneously but yields lim-
ited performance when transferred to single object tracking.
For single object tracking, we compare our attack with Ad>
attack (Fuetal., 2022), CSA (Yan et al., 2020), SPARK (Guo
et al., 2020b), One-shot (Chen et al., 2020a) and ABA (Guo
et al., 2021) under the same setting. All these methods sig-
nificantly degrade the trackers, while our approach degrades
the tracker at the first few frames, leading to a dramatic drop
(i.e., 0.658 success rates and 0.878 precision rates).

On the other hand, we also compare the attack per-
formance under the black-box setting. Concretely, we use
SiamRPN++ with ResNet as the targeted tracker. We imple-
ment the same experiments for SPARK and our attack by
transferring the adversarial perturbations generated by the
white-box tracker to the targeted tracker. The attack results
show that our attack has better attack transferability than
SPARK, as our method attacks both classification and regress
modules and involves the temporal coherent information
between frames during attacks. Furthermore, we compare
the proposed method with a decision-based black-box attack
by IoU attack (Jia et al., 2021). Our attack is slightly worse
than IoU attack, which constantly queries the targeted tracker
to adjust the direction of the attack and consumes heavy com-
putation. However, our attack without access to the targeted
tracker directly transfers the generated adversarial perturba-
tions with a more rapid attack speed.

Existing adversarial defenses. We compare our defense
with common defense algorithms, including adversarial
training, spatial smoothing, and color jittering. For spatial
smoothing, we utilize Gaussian blur as an illustration. We
choose random color jittering, including brightness, con-
trast, saturation, and hue. The defense results are reported in
Table 7. It indicates that all defense methods partially restore
the tracking performance. However, the spatial smoothing
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Table 6 Comparison with
existing adversarial attacks on

the OTB100 (Wu et al., 2015)
dataset

Type Attack method Succ. Drop Prec. Drop
Detection (White-box) DAG (Xie et al., 2017b) 0.147 0.182
Daedalus (Wang et al., 2021) 0.201 0.226
Tracking (White-box) Hijacking (Jia et al., 2019) 0.238 0.216
Ad 2 attack (Fu et al., 2022) 0.289 0.376
CSA (Yan et al., 2020) 0.372 0.443
SPARK (Guo et al., 2020b) 0.223 0.333
One-shot (Chen et al., 2020a) 0.444 0.577
ABA (Guo et al., 2021) 0.312 0.417
Ours 0.658 0.878
Tracking (Black-box) SPARK (Guo et al., 2020b) 0.066 0.027
IoU attack (Jia et al., 2021) 0.196 0.261
Ours 0.168 0.208

The best attack results are given in bold

Table 7 Comparison with common adversarial defenses on the
OTB100 (Wu et al., 2015) dataset

Table8 Comparsion with the proposed defense against various attacks
on the OTB100 (Wu et al., 2015) dataset

Defense Method Success Precision Attack Method Success Precision
SiamRPN++ (Original) 0.695 0.905 CSA (Yan et al., 2020) (Att) 0.346 0.489
SiamRPN++ (Attack) 0.038 0.033 CSA (Yan et al., 2020) (Att+Def) 0413 0.588
Adversarial Training 0.268 0.318 SPARK (Guo et al., 2020b) (Att) 0.473 0.575
Spatial smoothing (Gaussian) 0.340 0.423 SPARK (Guo et al., 2020b) (Att+Def) 0.620 0.752
Color jittering 0.183 0.252 ToU Attack (Jia et al., 2021) (Att) 0.499 0.644
Ours 0.413 0.535 ToU Attack (Jia et al., 2021) (Att+Def) 0.538 0.724

and color jittering could affect the image quality, while adver-
sarial training is time-consuming as it requires re-training of
the trackers. In contrast, our proposed defense outperforms
the other defense methods and maintains the original image
quality considerably.

Our defense against other attacks. To demonstrate the gen-
erality of our defense against various attacks, we choose
gradient-based white-box attacks (Yanetal.,2020; Guo et al.,
2020b) and decision-based black-box attacks (Jiaetal.,2021)
for evaluations. The experiment results against other attacks
with the proposed defense are presented in Table 8. Since
the proposed attack is designed to defend our gradient-based
attack, it can effectively protect against other gradient-based
attacks (i.e., CSA (Chen et al., 2020a) and SPARK (Guo et
al., 2020b)), but its performance is limited against decision-
based attacks (i.e., IoU Attack (Jia et al., 2021)). We will
further investigate the generalized defense in future works.

4.9 Limitations
We summarize the limitations of our method and poten-

tial directions for improvement in our future work. First,
although the proposed attack method considerably degrades
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the tracking performance compared to white-box attacks,
the transferability of generated adversarial perturbation com-
pared to black-box attacks has much room to improve. This is
especially true when transferring between two trackers with
significant differences in architecture (e.g., SiamRPN++ (Li
et al., 2019) and RT-MDNet (Jung et al., 2018)). Our future
work will explore a unified representation of features for
various trackers, further strengthening attack transferability
across multiple trackers. Second, since our defense method
relies on trackers’ concrete architecture, we need to manu-
ally set these empirical weights when defending the attack on
different trackers. This suggests learning a dynamic parame-
ter adjustment according to diverse trackers and adversarial
attacks in our future work.

5 Conclusion

In this paper, we explore the adversarial attack and defense
for visual object tracking. We propose an adversarial attack
to generate lightweight perturbations on the original video
sequences. When crafting adversarial examples, we integrate
temporal perturbations into frames by perplexing trackers
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with indistinguishable correct and incorrect inferences as
white-box attacks. For black-box attacks, we transfer the
adversarial perturbations generated by the victim tracker
to other unknown backbones and trackers, dramatically
dropping their performance. Furthermore, we train univer-
sal adversarial perturbations to add them into all frames,
which significantly degrades the tracking performance and
improves the attack speed. When defending adversarial
examples, we suppress the maximum of adversarial perturba-
tions to restore tracking accuracy. Extensive experiments on
six benchmark datasets demonstrate that the proposed meth-
ods perform favorably in attack and defense. In addition, our
defense method can reduce interference from perturbations
in real-world scenarios to robustify deep trackers.
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