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Abstract— Detecting and tracking objects in 3D scenes play
crucial roles in autonomous driving. Successfully recognizing
objects through space and time hinges on a strong detec-
tor and a reliable association scheme. Recent 3D detection
and tracking approaches widely represent objects as points
when associating detection results with trajectories. Despite the
demonstrated success, these approaches do not fully exploit
the rich appearance information of objects. In this paper, we
present a conceptually simple yet effective algorithm, named
AlphaTrack, which considers both the location and appearance
changes to perform joint 3D object detection and tracking. To
achieve this, we propose a cross-modal fusion scheme that fuses
camera appearance feature with LiDAR feature to facilitate
3D detection and tracking. We further attach an additional
branch to the 3D detector to output instance-aware appearance
embedding, which significantly improves tracking performance
with our designed association mechanisms. Extensive valida-
tions on large-scale autonomous driving dataset demonstrate
the effectiveness of the proposed algorithm in comparison with
state-of-the-art approaches. Notably, the proposed algorithm
ranks first on the nuScenes tracking leaderboard to date.

I. INTRODUCTION

3D object detection and tracking are two fundamental
tasks for autonomous driving. A recent trend in multi-object
tracking (MOT) is to convert 3D object detectors into trackers
and combine both tasks in the same framework. Typically,
this tracking framework represents objects as points when
associating detection results with trajectories, assuming that
position changes between consecutive frames are in a local
region. Despite the demonstrated success, this framework
tends to fail in the presence of large motion changes and
noisy detection results, due to the lack of rich appearance
information of objects, as shown in Fig. 1. In this work,
we aim at a conceptually simple yet effective algorithm,
which considers both the position and appearance changes
for simultaneous 3D object detection and tracking.

When learning instance-aware appearance representation
for 3D objects, two main challenges arise. First, current 3D
detectors mainly build upon LiDAR points, which are good at
distance sensing but lack of texture information. In contrast,
camera images provide rich color and texture cues of objects.
The progresses on 2DMOT [2]-[4] show that data association
greatly benefits from re-identification embedding, suggesting
the importance of appearance information in camera images
to distinct objects. However, how to exploit camera images
with LiDAR points to effectively represent objects in 3D
space still remains an open problem. Second, since joint
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Fig. 1. Tracking results on the nuScenes dataset from the state-of-
the-art LiDAR-only detector, CenterPoint [1], which only considers the
position changes. The ground truth bounding boxes are labeled in gray
and the tracked objects are labeled in colors. When position affinity leads
to incorrect tracking results in the presence of noisy detections and large
motion changes, the appearance textures from images are able to distinguish
the objects. This motivates us to take both position and appearance changes
into consideration for robust object tracking.

3D detection and tracking requires high computational effi-
ciency, it is unpractical to train a separate association network
to extract instance-aware appearance features per detection
like prior trackers [5]-[7]. Moreover, features extracted from
existing 3D detectors are instance-agnostic, with a focus
on the category-level differences. Therefore, it is of great
importance to enable 3D detectors to generate instance-aware
feature representation to facilitate 3D tracking association.
To address these issues, we propose to improve the state-
of-the-art LiDAR-only 3D detector [1] with a novel cross-
modal fusion scheme. We further attach an additional branch
to the detector to jointly learn instance-aware embeddings
to help tracking association. Our proposed model simulta-
neously produces the location and appearance embeddings
of 3D objects in a single forward pass, which accelerates
the association process. Specifically, our cross-modal fusion
scheme is motivated by PointPainting [8], which concate-
nates point-wise segmentation scores with each LiDAR



point. However, segmentation scores are too semantically
abstract to maintain sufficiently detailed appearance informa-
tion. Thus we explore a better representation by replacing the
segmentation scores with image features that contains richer
appearance clues. To better handle the modality differences,
we further apply separate 3D convolution branches to extract
the LiDAR feature and camera feature respectively. Extensive
ablation studies show that the above designs of our fusion
scheme benefits both detection and tracking. As the detec-
tion branch emphasizes category-level differences while the
appearance embedding branch focuses on instance nuances,
jointly training the detection and embedding branches leads
to degraded performance on both tasks. To strike a balance
between these two tasks, we alternatively train these two
branches. Experiments show that our proposed embedding
representation is effective in distinguishing instances without
hurting the detection branch.

We develop a novel tracking pipeline taking both position
and appearance changes into consideration for 3D MOT. We
observe that these two types of changes often vary across
different scenarios, so their reliability should be carefully
measured in association mechanisms. Prior methods simply
apply weighted summation [6] or fusion with convolution
network [5] to exploit these two clues. But those fusion
mechanisms do not explicitly complement each other, and
may even accumulate noisy association from both sides.
This motivates us to explicitly complement the position and
appearance clues. Since the vehicles in driving datasets move
regularly in most cases, we base the association on position
affinity. As appearance features are able to re-identify in-
stances, we use them to filter incorrect matched pairs and
re-associate lost objects. Extensive ablation studies show that
our presented mechanisms facilitate tracking association by
better exploiting position and appearance clues.

We validate our proposed AlphaTrack algorithm on the
large-scale autonomous driving dataset nuScenes [9]. Com-
pared to the state-of-the-art approach [1], we achieve
+10.69% and +9.55% gains in detection and tracking ac-
curacy. The main contributions are summarized as follows:

o We propose a novel cross-modal fusion scheme that
fuses LiDAR points with image features. We further
empower our model to jointly learn instance-aware
appearance representation together with detection.

o We present novel association mechanisms that explicitly
exploit both the motion and appearance changes for 3D
object tracking.

« We extensively validate the design choices of the pro-
posed algorithm on the large-scale nuScenes dataset.
Our AlphaTrack algorithm ranks first on the leaderboard
of the nuScenes tracking challenge to date.

II. RELATED WORK
A. 3D Obejct Detection

Tracking performance hinges on detection results. Though
LiDAR point clouds provide a very accurate range view for
3D detection and tracking, they are sparse and lack fine-
grained textures when compared with camera images. Recent

3D object detectors wildly exploit cross-modal data fusion to
utilizes the best of both worlds. The state-of-the-art LIDAR-
only detectors [1], [10], [11] use convolution networks to
transfer LiDAR points to the bird’s eye view (BEV) and
outperform the range-view methods [12], [13]. Hence, the
core challenge of fusion lies in consolidating the LiDAR
bird’s eye view with the camera view.

There are three typical types of fusion scheme. The
proposal level fusion methods [14], [15] perform fusion
at region proposal level, which brings computation load.
The feature level fusion methods [16], [17] perform fea-
ture sharing across image and LiDAR backbones, which
suffers from the misaligned viewpoint. Instead, point level
fusion methods [8], [18] augment LiDAR points with point-
wise concatenation. For better representation, our method
replaces the concatenated segmentation scores in [8] with
the projected image features. Besides, we exploit separate 3D
convolution backbones to flatten voxelized LiDAR features
and camera features into BEV. Experiments show that our
fusion scheme facilities both 3D detection and tracking.

B. Multi-Object Tracking

Existing MOT algorithms typically follow the tracking-by-
detection paradigm [19], [20], where the first stage detects
objects in bounding boxes and the second stage links the de-
tection results via data association. A proper affinity measure
is indispensable in data association. Thanks to the precise
distance sensing provided by LiDAR, current 3D MOT
methods mainly rely on position distance to measure affinity,
including Euclidean distance [1], Mahalanobis distance [21],
[22] and the IoU metric [20]. But these trackers are unlikely
to handle large motion changes and noisy detection results
by solely considering position changes.

As motion estimation in the 2D image is highly challeng-
ing, 2D MOT methods wildly explore rich textures in images
as re-identification features to greatly improve the affinity
measurement. Early works [23]-[27] utilize offline person
Re-ID models [27], [28] to extract discriminative features for
each object. For computational efficiency, recent methods [2],
[3], [29] explore one-shot methods to jointly detect objects
and learn instance-level features. The demonstrated success
suggests that it is feasible to enable 3D object detectors to
learn instance-aware features.

A number of methods [5]-[7] attempt to introduce appear-
ance feature or geometric feature in 3D MOT. However, those
methods consider detection and tracking as two separate
tasks. They extract instance-level feature independent of de-
tector for association, which takes extra post-processing time
after detection. PnPNet [30] presents an end-to-end model
to solve detection and feature representation for tracking.
However, it is based on LiDAR-only input and unable to
utilize appearance features of camera images. Besides, it
does not achieve better results than CenterPoint [1] on the
nuScenes dataset. Different from prior works, we propose
to empower 3D detector [1] to jointly learn instance-aware
appearance embedding with the cross-modal fusion scheme.
Our method exploits the camera feature without introducing
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Fig. 2. Architecture overview. First, we fuse each LiDAR point with corresponding point-wise image feature. Second, after voxelization and voxel-wise
feature extraction, we exploit separate 3D convolution backbones to flatten LiDAR features and camera features into BEV maps, i.e, LIDAR stream and
camera stream. Third, we produce 3D detections and instance-aware appearance embeddings jointly using two 2D convolution networks, i.e, the detection
branch and the embedding branch. In the tracking association, we take both position affinity and appearance affinity into consideration.

separate models in tracking association. Experiments show
that the proposed embedding representation is effective to
distinguish instances and thus significantly improves the
tracking performance with our association mechanisms.

III. APPROACH

This section presents the proposed 3D detection and track-
ing algorithm in detail, which considers both the position and
appearance changes of objects across space and time.

We construct our method on the basis of the state-of-the-
art LiDAR-only 3D detector, CenterPoint [1], which predicts
objects as points and associates objects by position changes.
In order to exploit rich appearance information, we equip
our model with cross-modal fusion scheme and enable the
model to output instance-aware appearance representation to
distinct objects. Fig. 2 shows an overview of our method.
First, we concatenate LiDAR points with corresponding
point-wise images features. Second, we modify the baseline
detector to process LiDAR features and camera features for
jointly producing 3D detection results and instance-aware
appearance embedding. Lastly, we exploit the instance-aware
appearance embedding to measure the affinity for tracking
with proposed tracking association mechanisms.

A. Problem Context

We phrase 3D detection and tracking as a jointly learning
problem. Let the object state be s = (P, A). P denotes the
3D detection results that include center location (z,y, 2),
bounding box dimension and orientation (h,w,l,0), which
locates objects in 3D world coordinate. And A denotes the
instance-aware appearance embeddings, which re-identify
each object instance. For 3D tracking, we aim to find
trajectories for each object in a sequence. Each trajectory T
links detected object state in sequence {si,s’ ,,...,si},
which starts at frame a where object appears and ends at
frame b where object disappears. Our proposed tracking
algorithm considers both position affinity and appearance
affinity. For any observed object from adjacent frames t;

and to, the object state should satisfy the following con-
ditions: (i) Dp (s}, My, 1, (st,)) < Dp(si,, My, 1, (s1,))-
(i) Da(s},,s;,) < Da(s},si,), where trajectory index
i # J, Mt () represents the motion prediction from
frame ¢; to frame to, Dp(-) represents the distance metric
of position and D4(-) represents the distance metric of
appearance embedding.

We obtain the state representation including P and A
jointly from our learnable end-to-end model, equipped with
cross-modal fusion scheme that exploits both LiDAR points
and camera images.

B. Cross-Modal Fusion Scheme

Our proposed cross-modal fusion scheme consists of data
preprocessing and architecture modifications. We present a
novel representation that fuse camera feature with LiDAR
feature. It enables the model to exploit camera appearance
information for both detection and tracking.

1) Data Preprocessing: We concatenate the input Li-
DAR points with point-wise image features. Each LiDAR
point originally contains the spatial location (z,y, z), the
reflectance ratio r and the relative timestamp of multiple Li-
DAR sweep t. To augment LiDAR points with corresponding
image features, we first extract image feature map by a 2D
detector backbone, where the channel number is set to 64
in our implementation. Then we set up the correspondence
between the LiDAR coordinate 1, with camera coordinates
l,, with a homogeneous transformation T followed by a
projection into the image. Let the camera matrix be M. We
project LiDAR point into the image plane as follows:

(u,v,1) =M T X (2,9, 2) €))

We fetch the corresponding point-wise image feature vector
f for each LiDAR point. The augmented points, denoted as
(z,y,z,7,t, ), are then voxelized for voxel-wise features.
2) 3D backbones: Our architecture follows the widely
applied voxel-based pipeline [11] to transfer voxelized fea-
tures into the BEV map. After voxelization and voxel
feature extraction, we modify the architecture to split the



3D convolution backbone into two parallel streams to pro-
cess LiDAR features and camera features separately, i.e.,
a LiDAR stream and a camera stream. Considering the
large modality gap between LiDAR features and camera
features, separate 3D convolution backbones show favorable
performance on narrowing the gap. Specifically, the location
stream flatten the LiDAR features to the BEV perspective
as LiDAR BEV map M; € RW*HXC and the feature
stream transfers the camera features into camera BEV map
Mc € RW*HXC Note that M, can be regarded as the
same normal representation of LiDAR input as in original
CenterPoint, while M is the additional BEV representation
of the camera images. The two types of BEV feature maps
are then fed into 2D convolution branches for detection and
appearance representation learning.

C. Joint Learning of Detection and Appearance Embedding

We apply two branches to learn detection and embedding
representation jointly in a single forward pass.

1) Detection Branch: We follow the baseline detector
to design the detection branch, which consists of a 2D
RPN network and regression heads. As CenterPoint only
exploits the LiDAR BEV features, our model exploits the
fusion module to apply both LiDAR feature and camera
feature. Specifically, our fusion module first apply 3 layers
of 2D convolutions to fuse features, i.e., Conv(M;,) —
Mypyse € RW*XHX2C where M;, € RW*HX2C is the
concatenation of LiDAR feature M7, and camera feature M.
Then we concatenate the fused output to LIDAR BEV feature
again to retain more location information that is critical
for detection regression as Cat(Myyse, Mr) € RW*HX3C
Finally, the RPN network transfers our concatenated features

into BEV feature-map Mp.; € RW>*H XC/, which is further
fed into the regression heads to output detection results.
The detection losses of regression heads keep the same as
CenterPoint, including focal loss, center loss of heatmap, and
L1 regression losses for size, offset, rotation, and velocity.
2) Appearance Embedding Branch: We attach an addi-
tional embedding branch parallel to the detection branch.
The appearance branch consists of a 2D RPN network and
convolution heads as well. The appearance representation is
based on the camera feature map M. The 2D RPN net-

work first generates feature map Mg, € RW*H XC/. The
regression head then predicts appearance embedding on top
of the RPN network output. In particular, the regression head
includes one layer of deformable convolution and two layers
of 3 x 3 convolution with 512 kernels. The output appearance
representation is in BEV map view £ € RH*Wx*512_ A the
outputs of the appearance and detection branches share the
same range in the BEV map, the detection properties and ap-
pearance representation for each object can be easily aligned
and jointly produced. We implement the training procedure
of appearance representation as a classification task. During
the training process, we extract identical appearance feature
vector ¢! of groundtruth box b® at its central location in the
heatmap and map the vector to the class distribution vector
p'(k). Let the one-hot representation of the ground truth class
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Fig. 3. Appearance affinity and position affinity are complementary in our
tracking pipeline. On one hand, appearance affinity filters the incorrectly
matched pairs due to fault position estimate. On the other hand, the
appearance affinity re-matches the lost pairs with a gating threshold of
position distance.

label be Li(k). We compute the softmax loss as:

N K
Lembedding = — »_ 2, L' (k) log(p* (k)), @
i=1 k=1
where K is the number of classes.

The straightforward uniformly training of both branches
will lead to degraded performance on both tasks. Because
detection emphasizes category information for object classi-
fication, whereas the embedding branch requires instance-
aware information to distinguish instances. We apply an
alternatively training strategy to strike a balance between
both sides. We first train the detection branch for 20 epochs.
Then we freeze the detection branch and train the appearance
embedding branch for another 10 epochs. Finally, we jointly
train the two branches together for one more epoch.

D. Tracking Association

With the detection result and the corresponding appear-
ance embedding for each 3D object, we perform tracking
association by computing position affinity and appearance
affinity, as shown in Fig. 3. A favorable strategy has to
take the reliability of both position and appearance changes
into consideration. We propose a novel tracking association
pipeline to explicitly exploit these two clues to comple-
ment each other, including a filtering mechanism and a re-
matching mechanism. Based on the observation that vehicles
in driving datasets move regularly in most cases, we weigh
more on position affinity. As appearance features are able to
re-identify instances, we use them to filter incorrect matched
pairs and re-detect lost objects.

The position affinity is measured by the position distance
Dp between pairs of detections and tracks. As in original
CenterPoint [1], position distance can be calculated by the
center point distance D% of 3D bounding boxes via velocity
prediction model as following:

DT DY) = (105t B = V2, 3)

where p’ ! is the center location of track T} ', P’ and v are
the center location and regressed velocity of detection D;.



TABLE 1.

Ablation studies on cross-modal fusion scheme and appearance embedding branch on the nuScenes [9] validation set. FI: fusion information

applied to augment LiDAR points, including Seg (segmentation scores) and Feat (image features). FM: fusion mechanism, including EF (early fusion
mechanism as point concatenation) and LF (late fusion mechanism at BEV map). AE: appearance embedding branch, which trained with uniformly

strategy or alternatively strategy. We report both detection accuracy and tracking accuracy (mAP% / AMOTA%) for each tracking class.

| FI.  FM AE | Bicycle Bus Car Motorcycle Pedestrian Trailer Truck | mAP1/AMOTA?T
(a) - - - 359274089 67.23/79.86 84.73/8293 57.41/5459 82.85/73.61 35.30/48.85 54.83/65.20 59.75 1 63.72
() | Seg EF - 5276 /5174  69.21/79.60 85.50/82.81 61.42/62.12 8549 /7457 39.90/48.56 56.98/64.59 64.47 / 66.28
() | Feat EF - 57.02 /5827 71.75/82.17 86.84/83.85 7225/77.21 86.77/7426 41.93/51.57 59.36/67.84 67.99 / 70.74
(d) | Feat LF - 62.09 /62.61 74.56 /83.03 87.50/84.41 75.78/78.18 86.96/73.71 43.86/53.97 61.57/70.41 70.33 / 72.33
(e) | Feat LF  Uniform | 56.94/59.13 70.02/80.07 8596/82.77 70.26/74.67 85.86/72.66 38.17/46.57 59.13/68.44 67.99 / 69.19
( | Feat LF Alter 64.26 / 65.86  74.05/83.67 87.60 / 8527 7494 /78.18 87.15/74.83 43.32/54.64 61.78/70.49 70.44 / 73.27

Gains from a to f ‘ +28.14 / +24.91 +6.82 / +3.81 +2.87 / +2.34 +17.53 / +23.59 +4.30 / +1.22 +8.02 / +5.79 +6.95 / +5.29 ‘ +10.69 / +9.55

TABLE II.  Ablation studies on tracking association mechanisms on the
nuScenes validation set. Our mechanisms including two components (Fiter
and Re-Match) to apply appearance affinity based on position affinity, com-
paring with two simple mechanism (Sum and Conv) that fuse appearance
affinity with position affinity. We evaluate the tracking performance in terms
of AMOTA and IDS based on two kinds of motion models.

| Motion | Sum Conv Filter Re-Match | AMOTAN(%) IDS|

(al) | Kalman 68.73 1021
(bl) | Kalman | 69.12 967
(c1) | Kalman Vv 67.68 1152
(d1) | Kalman Vi 68.53 3432
(el) | Kalman v N 70.00 929
(a2) | Velocity 72.39 642
(b2) | Velocity | v 72.77 639
(c2) | Velocity Vi 70.76 994
(d2) | Velocity Vi 73.21 715
(€2) | Velocity Vv v 73.27 575

The regressed velocity is trained with groundtruth, which
is not always available. So we also calculate position distance
based on the Kalman filter motion model as in [21], which

applies the Mahalanobis distance D% as following:

DN (T, DY) = \/(of — HALS TS (of —HALLTY), @)

where 62 denote the detection attribute of b;, uifl denotes
the estimated mean of state of track Tit_l, H and A denote
the linear observation model and state transition matrix that
makes prediction for tracks, S; is the innovation covariance.

The appearance affinity is measured by the appearance
distance D4 between pairs of detections and tracks. We
compute the cosine distance between high-dimensional ap-
pearance vectors as following:

t—1 7t e?l -e§.

Da(T;™ 7, D3) = {He§71||2}{||e§'”2}’ S)

where eﬁ_l and e§ denotes the appearance embedding fea-
tures of track Tf_l and detection D; respectively.

As illustrated in Fig. 3, for each frame in a video clip, the
tracking association involves two stages. In the first stage,
we compute both the position affinity and appearance affinity
between the detections and the predicted tracks in the track
store. We run greedy bipartite matching on position affinity
and remove the matched pairs whose appearance affinity
ranks beyond the top rate A (A is set to 0.4) among all pairs,
namely, filtering the pairs close in position but different in
appearance. Compared with using a constant threshold of
appearance similarity, the proposed distance ranking is more
robust. In the second stage, we re-match those unmatched

TABLE III.  Comparison with other appearance representations on the
nuScenes validation set. To be fair, we apply our appearance embedding,
the state-of-the-art 2D feature extractor [28] and 3D extractor [6] based on
the same LiDAR-only detector [1]. We compare the discriminative power of
appearance embedding in ATPR and the tracking performance in AMOTA.

APP Det \ ATPRN%)  AMOTAT(%) \
- CenterPoint - 63.72
AlignedRelD [28] | CenterPoint 66.92 54.56
PointNet [6] CenterPoint 41.94 51.82
AlphaTrack (ours) | CenterPoint 92.68 64.93

detections and tracks based on the appearance affinity in
a gating range provided by position distance. In general,
our proposed tracking strategy facilitates original position-
only tracking association to apply appearance clues, which
explicitly reduces mismatches caused by position ambiguity.

IV. EXPERIMENTS

In this section, we describe the dataset, implementation
details and evaluation results of our proposed method.
A. Dataset

We evaluate our method on the large-scale driving bench-
mark dataset nuScenes [9]. It is annotated with 3D bounding
boxes for 1000 20-second scenes at 2Hz, resulting in 28130
samples for training, 6019 samples for validation, and 6008
samples for testing. Among the full autonomous vehicle data
suite, we exploit the LiDAR point clouds and RGB images
from all 6 cameras. In addition to assigning the bounding box
annotations for the detection training, we assign instance IDs
to object individuals for appearance representation training.
As the 3D MOT challenge evaluates the performance of 7
classes: cars, trucks, buses, trailers, pedestrians, motorcycles,
and bicycles, the overall instance numbers are too large
to cover. Further, there exists a severe class imbalance.
To deal with those problems, we follow the class-balanced
grouping strategy proposed by CBGS [31]. Specifically, we
split 8 classes into 5 groups: (Car), (Truck), (Bus, Trailer),
(Motorcycle, Bicycle), (Pedestrian), putting the classes of
discrepant shapes or sizes together. We assign the ground
truth ID labels to each instance in each group respectively.

B. Implementation Details

As for the input size, we set the detection range to
[-51.2m,51.2m] for the X and Y axis, [—5m,3m]| for
Z axis, following the nuScenes evaluation guideline. To
extract point-wise image features, we employ the pre-trained
DLA-34 in [32] as extractor. The input image is resized to
1600900 and the feature map has a resolution of 400 x 225.



TABLE IV. Evaluation results on the nuScenes test set. Our AlphaTrack achieves remarkable performance gains over the state-of-the-art 3D MOT trackers,

which ranks first on the nuScenes tracking learderboard to date.

Method ‘ Bicycle Bus Car Motor Ped Trailer Truck ‘ AMOTAT(%) AMOTP|(%) FP| FN| IDSJ)
Stanford[PRL-TRI [21] 25.5 64.1 719 481 74.5 49.5 51.3 55.0 79.8 17353 33216 950
CenterPoint-single [1] 32.1 71.1 829  59.1 76.7 65.1 59.9 63.8 55.5 18612 22928 760

EagerMOT 58.3 74.1 81.0 625 74.4 63.6 59.7 67.7 55.0 17705 24925 1156
Octopus-Traker 41.2 745 832 694 79.0 64.5 63.5 67.9 56.2 16971 22272 781
AlphaTrack (ours) ‘ 47.1 749 842 742 783 70.1 64.2 ‘ 70.4 57.5 18247 21126 718
TABLE V. Comparison with other tracking methods on the nuScenes ~ —— - =3
validation set. All trackers listed above attempt to consider both motion and . .
appearance in tracking association with different models. We compare with ‘pf ’ Sy
their published AMOTA, where [30] only provides result of car and [7] | % ‘
only provides overall result. ‘ ’\ g
Method | Modality — Tracking Association | Overall — Car - A l..g
a -
Uncertainty [6] 3D Motion+Appearance 59.4 75.0 . ‘
PnPNet [30] 3D Motion+Appearance - 81.5 i e b
GNN3DMOT [7] | 2D + 3D  Motion+Appearance 29.9 - &
Probabilistric [5] | 2D + 3D Motion+Appearance 68.7 84.3 L 4
AlphaTrack(ours) | 2D + 3D  Motion+Appearance | 73.3 853
-
Bo ™
i 3

We set the stride of 3D backbone to 8, producing the output
resolution of 128 x 128. We limit the maximum number
of voxels to 60k for sparse convolution. We freeze the
parameters of DLA-34 backbone during the training process.
Following [1], we optimize the model using the adam [33]
optimizer with the one-cycle learning rate policy [34], with
max learning rate le — 3, weight decay 0.01 and momentum
0.85 to 0.95. For association details, we apply the greedy
algorithm and set an upper bound threshold to solve the
bipartite matching problem. In the velocity-based method,
we set center distance threshold 7, = 5. In the Kalman
filter-based method, we set Mahalanobis distance threshold
Tp = 11. We set appearance rank rate threshold as A,qnt =
0.4 for filtering and set the appearance distance threshold
T, = 0.4 for re-matching. The running time is on average in
total 254ms, 250ms for the network inference and 4ms for
the tracking association, on the GeForce GTX 1080 Ti with
a single thread i7-9700 CPU@3.60GHz.

C. Metrics

We evaluate three aspects of performance for our method:
detection accuracy, the discriminatory ability of the produced
appearance embedding, and the tracking performance. To
evaluate detection accuracy, we compute the average preci-
sion (mAP). To evaluate the discriminative power, we extract
appearance embedding of all ground truth instances over the
whole validation sets of nuScenes, then apply 1 to N retrieval
among all these instances and report the true positive rate
at false accept rate 0.1 (TPR@FAR=0.1). For the tracking
performance, we follow the evaluation tool in nuScenes
Tracking Challenge [9], which applies average multi-object
tracking accuracy (AMOTA) as the main evaluation metric
and includes other standard metrics.

D. Ablations Studies

We conduct ablation studies to evaluate the three key
components of our method: cross-modal fusion scheme, joint

Detection similarity =~ Embedding similarity

Ground truth

Fig. 4. Visualization of the retrieval performance of the detection feature
map and the appearance embedding feature map in bird-eye-view. The target
object is located in red circle, which is specified in Frame T and searched in
the following two sample frames. The appearance embedding feature map is
aware of the instance-level difference to distinct the target object, while the
detection feature map is object-agnostic so that its response map is unable
to distinct instances.

embedding representation and tracking association mecha-
nisms. For generalization, our experiments based on two
different kinds of motion prediction models: velocity model
and Kalman filter model. The velocity model tends to provide
more accurate prediction by regressed output, but it needs
groudtruth for training and not always available. By contrast,
the Kalman filter model is applicable to all datasets, which
predicts and updates the tracks with a linear motion model.

We evaluate the detection and tracking accuracy for each
tracking class on the nuScenes validation set in Table I,
where a and e respectively show the results of baseline
LiDAR-only method [1] and the final results of our proposed
method. For simplicity, we only compare the tracking results
based on velocity-based model in Table I. Comparing b and
¢, replacing the segmentation scores that proposed by [8]
with our image features achieves overall gains of +3.52%
mAP and +4.56% AMOTA. It illustrates that the fine-grained
image features provide richer appearance information. Com-
paring ¢ and d, our late fusion mechanism achieves gains
of +2.34% mAP and +1.59% AMOTA by flattening LiDAR
feature and camera feature to BEV maps separately instead of
simple early concatenation. This demonstrates the superiority
of our late fusion method that considers the modality differ-
ences. Comparing e and f, the simply uniformly training
with both tasks will hurt both detection and tracking per-
formance, while our alternative training strategy enables the
jointly appearance embedding representation without hurting
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Fig. 5. Visualization of the tracking results in bird’s eye view. Results show that our tracking association makes full use of appearance information to

distinct objects, achieving much smaller ID switches than CenterPoint does. To make fair comparison on the association effect, we enhance the original
CenterPoint detector by using our cross-modal fusion scheme but leaving the embedding branch.

detection and achieves gains of +0.11% mAP and +0.94%
AMOTA. The tracking improvement mainly comes from our
proposed tracking association mechanisms that applies the
appearance affinity with original position affinity.

We further ablate the tracking mechanisms in Table II to
show how our method works explicitly. We compare our
proposed mechanism with two simple fusion mechanisms:
summation mechanism and convolutional fusion mechanism.
The summation mechanism sums up the position affinity
and appearance affinity as final affinity by weights to as-
sociate, which slightly improves the tracking performance.
We implement convolutional fusion mechanism by apply a
convolutional layer that fuse embedding feature with position
vector to compute affinity, which fails to enhance the tracking
performance. That demonstrate that those fusion methods
can not apply the complementary information from position
and appearance reasonably. Our method exploits appear-
ance clues explicitly with two mechanisms, i.e., filtering
mechanism and re-matching mechanism. The pure filtering
mechanism deletes false matching but do harm to IDS since
the tracks are fragmented as shown in dl and d2. The
re-matching mechanism improves both AMOTA and IDS
by adding the lost pairs and enhancing continuity of the
trajectory, as shown in el and e2. The cooperation of these
two mechanisms improves the overall performance greatly.

Notably, the performance gain is related to the position
association baseline that differs in two motion models.
Generally, Kalman filter makes coarse motion prediction,
resulting in lower baseline accuracy. So it achieves greater
performance gain, i.e., +5.00% AMOTA increase for car
and +2.81% increase for pedestrian. However, the velocity
motion model tends to fail in some categories such as

Bicycle, whose velocity are irregular, and our tracking al-
gorithm achieves +2.42% AMOTA increase. We only report
the overall performance without expansion of each class due
to the space limitation.

E. Quantative Results

We evaluate the tracking results on the nuScenes test set
and report the first place performance to date, as shown in Ta-
ble IV. Compared with our baseline model CenterPoint [1],
our method achieves substantial gains in all categories of
AMOTA and remarkable drops in the IDS. We also outper-
form in metrics including FP and FN that indicate detection
accuracy. Our method surpasses the second place method on
metrics including AMOTA and IDS, although inferior in FP.
Our algorithm thus achieves more robust tracking.

We fairly compare our proposed embedding representation
with other feature representation methods in Table III. The
method [28] extracts camera feature from image patches
and [6] extract LiDAR feature from LiDAR points cropped
from bounding boxes. Although these approaches apply extra
models to produce instance-level feature for each detection,
their representations show worse discriminative power than
our joint representation and fail to enhance the tracking asso-
ciation. Besides, our embeddings are jointly produced with
detections, which takes only 4ms for tracking association,
while [28] and [6] take 77ms and 24ms association time
respectively for extracting the instance-aware features.

Prior methods have also tried to consider both motion and
appearance changes in 3D MOT. We compare with them in
Table V. Results show that our method stands out by a large
gain. Note that [21] also applies CenterPoint [1] as detector,
but it introduces 2D camera feature with a separate model
independent of detection. Our method introduces 2D camera



feature to enhance both detection and tracking with a jointly
learnable model, achieving greater performance gains.

E Qualitative Results

In Fig. 5, we showcase some qualitative tracking results
to visualize how our proposed appearance embedding assist
tracking association. We compare our method with aug-
mented CenterPoint, namely a position-only tracker equipped
with the same data fusion scheme as ours. So the comparison
fairly illustrates the validation of our tracking pipeline that
enhanced by proposed embedding. In scene 1 and scene 2,
the position-only tracker fails to associate the same object
due to the missed detections, our method succeeds to recover
the lost objects. In scene 3 and scene 4, the position-only
tracker is challenged by the noisy detections, resulting in
unstable tracks, while our method eliminates the continuous
ID switches. In scene 5, our method overcomes the ID
switch, where the car is under a sharp turn.

We further visualize the retrieval performance of the de-
tection feature map and the embedding feature map in bird’s
eye view in Fig. 4. We select the target object in Frame T’
and search it in the next few frames by computing the cosine
similarity between the target feature and the searched object
feature maps. The output response maps demonstrate that
our proposed appearance embedding is capable to distinguish
objects, while the detection feature map is instance-agnostic.

V. CONCLUSION

In this paper, we propose a conceptually simple yet
effective algorithm, named AlphaTrack, which performs 3D
object detection and tracking jointly by considering both
position and appearance changes through space and time.
We propose to equip the state-of-the-art LiDAR-only 3D
detector with cross-modal fusion scheme and instance-aware
appearance embedding. We further propose a novel tracking
pipeline to fully exploit the appearance clues with position
clues. We demonstrate the new state-of-the-art 3D tracking
results of AlphaTrack on the nuScenes benchmark. Our
method not only provides favorable detection predictions
but also improves the tracking performance with the jointly
learned appearance feature embedding. As the associated
trajectories have the potential to smooth the unstable detec-
tions and re-detect the lost objects, we consider feeding the
associated results back for detection learning as a promising
future work.
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