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Robust Online Tracking via Contrastive
Spatio-Temporal Aware Network
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Abstract— Existing tracking-by-detection approaches using
deep features have achieved promising results in recent years.
However, these methods mainly exploit feature representations
learned from individual static frames, thus paying little atten-
tion to the temporal smoothness between frames. This easily
leads trackers to drift in the presence of large appearance
variations and occlusions. To address this issue, we propose
a two-stream network to learn discriminative spatio-temporal
feature representations to represent the target objects. The
proposed network consists of a Spatial ConvNet module and
a Temporal ConvNet module. Specifically, the Spatial ConvNet
adopts 2D convolutions to encode the target-specific appearance
in static frames, while the Temporal ConvNet models the tem-
poral appearance variations using 3D convolutions and learns
consistent temporal patterns in a short video clip. Then we
propose a proposal refinement module to adjust the predicted
bounding box, which can make the target localizing outputs to
be more consistent in video sequences. In addition, to improve the
model adaptation during online update, we propose a contrastive
online hard example mining (OHEM) strategy, which selects hard
negative samples and enforces them to be embedded in a more
discriminative feature space. Extensive experiments conducted on
the OTB, Temple Color and VOT benchmarks demonstrate that
the proposed algorithm performs favorably against the state-of-
the-art methods.

Index Terms— Spatial-temporal modeling, proposal refine-
ment, contrastive online hard example mining.
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Fig. 1. Illustration of CSTNet tracker in the video of Jump. The blue and
yellow boxes are the predicted target states using the spatial and temporal
information respectively. The red boxes denote the ultimate output proposals.
(a) Tracking results using MDNet [1]. The detector fails to estimate target state
due to drastic appearance variations. (b) The intermediate results predicted
by the Spatial ConvNet, Temporal ConvNet and the ultimate outputs of our
CSTNet. The target states can be correctly predicted after spatio-temporal
proposal refinement.

I. INTRODUCTION

V ISUAL object tracking is one of the most fundamen-
tal computer vision problems and related to a wide

range of applications such as video understanding, robotics,
and autonomous driving. The typical tracking-by-detection
framework formulates the visual tracking task as a detection
problem. Existing tracking-by-detection approaches first gen-
erate a dense set of positive and negative samples around
the searching area, then incrementally update a pre-trained
classifier to compute the scores of candidate samples. The
sample with the maximum score indicates the target state.

In recent years, various tracking-by-detection approaches
[1]–[7] have been proposed. Most of these methods focus
on constructing robust classifiers such that the target object
is distinguishable in the feature space, i.e., can be easily
separated from the background. Despite the demonstrated suc-
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cesses, the performance of these approaches is limited by two
issues. First, the feature extractor for describing positive and
negative samples is learned from individual frames, where the
valuable temporal information is missing. As the target object
in a video often undergoes significant appearance changes,
features that once are discriminative may become inconsistent
in a long temporal span. Second, since visual tracking is
formulated as an online learning problem, there exists domain
gap between the online update and offline trained models. This
gap limits the discriminative power of the classifier during
online tracking, especially when the tracker undergoes chal-
lenging scenes (e.g. background clutter or partial occlusion).
The hard samples may be incorrectly classified, leading to
tracking failures eventually.

To address the first issue, prior works [8]–[10] learn visual
appearance by integrating spatial and temporal dynamics.
These methods assume the feature representations in continu-
ous frames are temporally consistent over time, thus the target
appearance variations remain smooth. But in practice, this
assumption does not hold true when severe target appearance
variations occur. Besides, the object appearance is also affected
by a number of environmental factors, such as illumination
variation and motion blur. The hand-crafted spatio-temporal
correspondences may not stand if these challenging factors
are involved in the videos.

For the second issue, the online hard example mining
(OHEM) [1], [11]–[14] strategy is introduced into object
trackers to alleviate the model adaptation problem. As reported
in the previous works [15]–[19], the hard samples distributed
close at the classification margin are more discriminative than
the easy samples, which can significantly boost the detection
accuracy. In the online tracking phase, whether the selected
hard examples are reliable or not will greatly affect the final
tracking result. Most of the existing approaches enforce the
specifically defined “hard samples” to be correctly identified,
but the relationship between the hard and easy samples has
not been taken into account yet.

In this article, we propose a two-stream network
within tracking-by-detection framework called Contrastive
Spatio-temporal Network (CSTNet), which estimates target
state from the perspective of spatio-temporal constraint. Our
objective is to infer the target location by mining the spatial
features in single frame and dynamic temporal features in
multiple frames within a unified framework, and learn dis-
criminative classifiers in online manner to improve the model
adaptability. To this end, the CSTNet simultaneously generates
proposals in spatial domain and cuboid proposals in temporal
domain, and constructs the correspondences between these two
kinds of proposals to ensure the computation efficiency. The
spatial detector is more powerful for target-specific localizing
in static frame, while the temporal detector can effectively
maintain the proposal’s appearance consistency in multiple
video frames, thus these two branches can well complement
each other to alleviate target drifting. As shown in Fig. 1,
the proposed tracker follows a coarse-to-fine verifying scheme.
At the coarse localizing stage, a Spatial ConvNet and a Tempo-
ral ConvNet are used to estimate the translations of the object,
which coarsely discard the vast majority of unpromising
proposals. After that, we adopt a proposal refinement module

to verify the target object’s temporal consistency in continuous
video sequences, which makes the output bounding box to
be more reliable. Furthermore, to enhance the discriminative
power during online model updating, we propose an online
contrastive hard negative mining method to select important
samples for network online finetuning.

In conclusion, the main contributions of our work can be
summarized as follows:

• We propose a spatio-temporal aware network, which
exploits the spatial and temporal visual cues to learn more
discriminative appearance for target state estimation.

• We adopt a proposal refinement method to adjust the
prediction result, yielding the target state inference to be
more consistent in temporal axis.

• We propose a contrastive OHEM method, which enforces
the intra-class distance between the hard negative and
the easy negative samples to be closer, and increases the
inter-class distance between the hard negative and the
positive samples during model updating.

II. RELATED WORK

The past decade has witnessed the great progress in visual
object tracking task, several comprehensive reviews of exist-
ing tracking methods can be referred to [20]–[22]. In this
section, we briefly discuss three directions closely related
to our work: deep learning based tracker, spatio-temporal
structure modeling and online hard example mining (OHEM)
technique.

A. Deep Learning Based Tracker

Inspired by the success of deep learning models for image
classification and recognition [23], [24], adopting deep convo-
lutional features to online object tracking task is a prevalent
approach in recent trackers. A representative method is the
correlation filter based technique [25], which simplifies the
dense sampling process with circulant matrix structures, yield-
ing many real-time trackers with superior performance. After
that, further works utilizing discriminative deep features from
CNNs have been proposed [26]–[29]. Several methods focus
on investigating the representation property of convolution lay-
ers in CNNs. For example, Ma et al. [26] exploit features from
various layers in pre-trained networks and fuse the response
maps together to improve accuracy. Danelljan et al. [28] use
continuous convolution filters to combine continuous confi-
dence maps in different spatial resolutions. Zhang et al. [29]
introduce the particle filter method to the correlation filter
framework with CNN features and exploit interdependencies
among the samples to improve tracking performance. Another
research hotspot is employing the Siamese structure [30]–
[33] to convert visual tracking as a target matching prob-
lem. In [31], Bertinetto et al. propose an end-to-end fully
convolutional network, which computes the similarity func-
tion for all translated sub-windows within the search region.
In [33], Wang et al. reformulate the correlation filter within the
Siamese framework and use the attentional module to model
the salient tracking target for visual representation.

Besides, visual tracking also can be tackled within object
detection framework [1], [5]–[7], [11], [34]–[36]. In [1],
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Nam et al. train a multiple domain-specific network to learn
generic feature representations, then the domain-specific fully
connected layers are online updated to avoid model overfitting.
In [5], Nam et al. also introduce a tree-structured graphical
model to select proper convolution layer in CNN according to
the degree of layers’ reliability. Despite these research efforts,
the power of target detector is greatly limited by the finite
training examples. To address this issue, VITAL [7] enlarges
the target appearance variations by generative adversarial
network (GAN), which learns robust mask maintaining the
most discriminative internal features of target object over long
temporal span for samples extension. In [34], Wang et al.
assume all the samples lie in a unified manifold space and
adopt a positive samples generation network (PSGN) to enrich
the training data by retrieving the constructed target object
manifold. In [35], Zhuang et al. separate feature learning
procedure into two parts, wherein the shallow feature learn-
ing component emphasizes the occlusion-aware properties
and the deep feature learning component focuses on the
discriminative-aware feature. In summary, all these trackers
share the merits of representative and discriminative power
in CNNs, but merely build appearance representations using
frame-level features would induce target drifting problem
when severe target deformation or cluttered background is
involved.

B. Spatio-Temporal Structure Modeling

Spatio-temporal cues have attracted massive attention in
computer vision community. They have been adopted into
various specific tasks like action recognition [37]–[39], video
segmentation [40], video object detection [41] and person
re-identification [42]. For the specific visual tracking problem,
the spatio-temporal appearance representations of the target
object also play a crucial role.

Previous works typically resort to sparse representation
learning [9], [43], multiple-frame appearances associating
[44]–[46] and dynamic motion estimation [47], [48] to exploit
the spatio-temporal information. For instance, in [9], a sparse
dictionary is firstly constructed for template representation,
then the temporal information is incorporated by updating
the template representation via incremental subspace updat-
ing approach. In [43], a spatio-temporal locality structure is
proposed to model the local correlations between the target’s
appearance in multiple frames. This structure enforces the
learned dictionary to be low rank and provides better repre-
sentation for the samples. In [44], a spatio-temporal objectness
detector named STCL is proposed, which constructs temporal
coherence of sequences to improve the quality of objectness
proposals for object detection. In [47], Zhu et al. enrich
the quality of feature representation by unifying optical flow
and correlation filters in end-to-end ConvNet. In conclusion,
most of the existing spatio-temporal based trackers adopt
hand-crafted or deep features in each individual frame to create
temporal consistent representation for target state inference,
but the intrinsic temporal correlations of target-specific fea-
tures in continuous video frames have seldom been explored.

To capture the temporal information for deep representa-
tions, the temporal convolution operator has been proposed for

video analysis. Prior works [37], [49]–[52] demonstrate that
the 3D convolution achieves superior performance in a range
of video-based applications. For example, Tran et al. [38]
design the C3D architecture to learn spatio-temporal features
in a simple and effective manner. Xu et al. [52] extend the
Fast-RCNN detector to 3D ConvNet and propose R-C3D
Network for activity detection in untrimmed video streams.
Hou et al. [53] introduce the 3D convolution to action detec-
tion problem, they divide the video frames into equal length
clips and produce tube proposals to model the activities of
action motion. Shou et al. [51] incorporate the convolution
filter in spatial axis and de-convolution filter in temporal axis
into a joint Convolutional-De-Convolutional (CDC) filter to
infer the action dynamics. However, little or no work has
been done specifically to explore the effectiveness of 3D
convolution architecture in visual tracking task. How to utilize
the spatio-temporal convolutional information in the specific
visual tracking problem is still an open problem.

C. Online Hard Example Mining

The discriminative power of the target-specific detector
proves to be critical for visual tracking. Different from object
detection task, which generates large numbers of proposals in
the whole image for multiple categories classification, object
tracking collects proposals in local searching area and simpli-
fies the detection procedure as an online binary classification
problem. The trivial detection offsets may be accumulated
during online updating and eventually lead to severe target
drifting.

To alleviate this issue, some efforts are made to enhance the
discriminative power of the online classifier using Online Hard
Example Mining (OHEM) strategy [15], [54]–[56]. As we
know, the challenging samples near the decision boundary of
a classifier will significantly affect the classification results,
especially when the distribution of training data is imbalanced.
To overcome this problem, OHEM is proposed to select the
high-quality hard examples for detector training. For example,
in [15], Shrivastava et al. propose OHEM procedure for object
detection task, the hard examples with high training loss
are carried out and retrained again to improve the detection
performance. In [54], the focal loss is proposed to balance
the contribution of easy examples and hard examples during
training. In [55], Wang et al. introduce an adversarial network
into the object detector, the hard examples with occlusive mask
are generated for retraining so that the detector could be more
robust against target occlusion.

Besides, the idea of hard negative mining has been intro-
duced to object tracking task. In [11], Fan et al. adopt
hard mining batch to select the helpful distracting negative
samples in the online SGD optimization procedure. Chen et al.
[12] propose an automatic hard negative mining method to
eliminate the negative effects of background region and use
a weighted function to enhance positive response. Zhu et al.
[13] construct the semantic negative pairs in the SiamRPN
[57] tracker, which balance the training data distribution and
reduce the redundant easy proposals to improve the discrim-
inative ability. In [58], Li et al. introduce the hard negative
mining to the correlation filter framework, which enriches the
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Fig. 2. Overview of our CSTNet framework. We employ 2D convolution for Spatial ConvNet and 3D convolution for Temporal ConvNet respectively.
Proposals cropped from current frame are set as input to the Spatial ConvNet. The video clip consists of multiple frames is passed to the Temporal ConvNet.
We use the ROIAlign operator to extract the temporal features corresponding to the frame-level proposals. The target state is ultimately determined by a
spatio-temporal proposal refinement module.

sample pool in a wider range to capture appearance variations.
Although these methods are able to choose hard examples for
fine-grained representation, the relationships between the hard
samples and easy samples are ignored, thus the discriminative
ability may be limited by the imbalance of examples distrib-
ution.

III. THE PROPOSED CSTNET

The architecture of the proposed network is shown in Fig. 2.
Our CSTNet consists of two major streams: a Spatial ConvNet
and a Temporal ConvNet.

• Spatial ConvNet: The goal of the Spatial ConvNet
is to infer the target location using static frame-level
features. We adopt three 2D convolutional layers and two
fully connected layers to determine the identification of
sampled proposals in current frame.

• Temporal ConvNet: The Temporal ConvNet takes con-
tinuous video clips as input, and implicitly generates
temporal cuboid proposals using ROIAlign. It employs
3D convolution to capture the appearance variations in
consecutive video frames.

A. Spatial ConvNet

The spatial localizing stream performs target-specific pro-
posal detection to predict target state at each individual frame.
Given a video V in the training dataset which consisting of K
frames {It }t=1:K and the ground truth coordinates {Bt }t=1:K
with Bt = (Bx

t , B y
t , Bwt , Bh

t ). For every frame It , we first
randomly exploit N candidate samples

{
X1,t ,X2,t , · · · ,XN,t

}
and annotate the label yi for each sample as follows:

P(yi |Xi,t ) =
{

1, if IoU(Xi,t ,Bt ) ≥ 0.7

0, otherwise.
(1)

After that, the samples and their relative labels are fed into
the network to train a binary target-background classifier.

We train this spatial localizing stream by stacking multiple
2D convolutional layers. Suppose the feature in the l-th layer
is denoted as f l

S , the layer-wise weight and the corresponding
bias are denoted as wl

S and bl
S respectively. For each

convolution layer, f l
S is calculated by taking the feature f l−1

S
in (l − 1)-th layer as input and the activated output can be
obtained as follow:

f l
S = ReLU(bl

S + wl
S ∗ f l−1

S ), (2)

where ∗ denotes the convolution operator and ReLU is the
Rectified Linear Unit. In each connection point of neighbour
convolutional layers, we employ a max pooling layer to reduce
the resolution of the feature map, yielding the reception field
to be insensitive to target appearance distortions. Finally,
we add two fully connected layers at the top of the network
to squeeze the feature maps of all the proposals into semantic
vectors, which are identified by the nonlinear classifier. The
probability score P(Xi,t ) is computed by propagating the
sample Xi,t through the Spatial ConvNet, which is given by

P(Xi,t ) = φS(It ,Xi,t ), (3)

where φS(·) denotes the nonlinear mapping function
learned by the spatial localizing detector. This classification
probability can be predicted using the cross-entropy loss:

LS =−
NB∑
i=1

{
yi log P(Xi,t )+(1−yi) log(1− P(Xi,t ))

}
, (4)

where NB denotes the number of training proposals in a mini
batch.

B. Temporal ConvNet

The goal of this module is to estimate the target location
using the reliable temporal information. The Spatial ConvNet
only utilizes convolutional operations in static frame, while
the target appearance correspondences have not been explicitly
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Fig. 3. The cuboid proposal and tube proposal in continuous frames.

encoded yet. This limitation may lead to instability of target
localizing between frames. To alleviate this problem, prior
works [9], [43], [44] demonstrate that the adjacent frames
can bring complementary valuable information on how target
moves and provide basic guidance for inferring the target state.
Motivated by this, we propose a Temporal ConvNet using 3D
convolution, which is able to exploit the dynamic temporal
information to infer the tracking target state in a stable way.

To explain the mechanism of the Temporal ConvNet,
we first introduce the following notation and give a brief
demonstration in Fig. 3. For a video sequence V , a cuboid
proposal is defined as fixed size bounding boxes extended from
time step t − τ to t , a tube proposal can be regarded as the
connected proposals in these continuous frames after bounding
box regression. As mentioned in previous, we have sampled
N proposals in current frame, to extend the frame-level
proposals in temporal domain, a straightforward way is to
replicate these frame-level proposals and generate N cor-
responding temporal cuboid proposals

{
T1,t ,T2,t , · · · ,TN,t

}
in the neighbour frames {It−τ , · · · , It−1, It }, where Ti,t ={
Xi,t−τ , · · · ,Xi,t−1,Xi,t

}
is the cuboid proposal extends pro-

posal Xi,t to 3D video space. However, this naive implemen-
tation will greatly increase the burden of the whole network
and the training is time-consuming as the 3D convolution
is much slower than 2D convolution. To accelerate the data
propagation process of the temporal cuboid proposals, inspired
by the methodology proposed in Mask RCNN [59], we per-
form ROIAlign to extract the corresponding semantic feature
representations for temporal cuboid proposal Ti,t .

We introduce a labelling criterion C(·) to measure the
closeness of candidate cuboid proposals to the real target
location connected by the annotated ground truth. Specifically,
let’s denote the standard tube proposal path as Gt , where
Gt = {Bt−τ , · · · , Bt−1, Bt } is constructed by the ordered
ground truth bounding boxes. The temporal criterion C(·)
measures the discrepancy between Ti,t and Gt by averaging
the IoU overlap along the frames:

C(Ti,t ) = 1

τ + 1

t∑
t−τ

∣∣O(Ti,t ,Gt )
∣∣ , (5)

here O(Ti,t ,G) denotes the accumulated IoU overlap in a
video clip. The idea behind Eq. 5 is that if the candidate cuboid
proposals in the whole (τ + 1) frames are accurate enough,
the motion turbulence compared to the ideal motion trajectory
would be very small. Thus the label of Ti,t can be given as

follow:

P(yi |Ti,t ) =
{

1, if C(Ti,t ) > 0.6

0, otherwise.
(6)

The Temporal ConvNet uses 3D convolution and 3D
max-pooling layers to model the temporal dynamic charac-
teristics. In the l-th 3D convolutional layer, the input is a
4-dimensional tensor f l

T ∈ R
Hl×Wl×Tl×Cl , where Hl , Wl ,

Tl and Cl denotes the height, width, temporal depth and
number of channels of the feature maps respectively. The 3D
convolutional layer propagates the temporal information as:

f l
T = ReLU(bl

T + wl
T � f l−1

T ), (7)

here � denotes the 3D convolution proposed in [37], wl
T ,

bl
T are the network parameters in current layer and f l−1

T is
the feature in last layer. By stacking multiple 3D convolution
and 3D max-pooling layers, the dimensions of features in
horizon, vertical and temporal axes are gradually squeezed
and finally the temporal dimension T reduces to 1. Therefore,
the feature maps in the top layer degrade to a fixed size
multi-channel 3-dimensional tensor. Afterwards, we transfer
the temporal features to semantic vectorized features using
two fully connected layers. The score for cuboid proposal Ti,t

can be inferred as:
P(Ti,t ) = ψT (It−τ , · · · , It−1, It ,Ti,t ), (8)

where ψT (·) denotes the nonlinear mapping function learned
by the Temporal ConvNet. The Temporal ConvNet is also
trained using the cross-entropy loss:

LT =−
NB∑
i=1

{
yi log P(Ti,t )+(1−yi) log(1− P(Ti,t ))

}
, (9)

where NB denotes the amount of the temporal cuboid propos-
als in a mini batch.

C. Network Training

The two modules of the whole network are trained indepen-
dently to capture both spatial and temporal visual cues. First,
we densely generate numbers of proposals to train the Spatial
ConvNet and obtain frame-level feature representations. Then
we extend the frame-level proposals to temporal cuboid pro-
posals to train the Temporal ConvNet. For Spatial ConvNet,
we adopt the convolutional layers from the VGG-M model pre-
trained on ImageNet as backbone and add two fully connected
layers in the following for semantic feature encoding. Every
proposal is encoded to be a 2-dimensional vector, which indi-
cates whether the relative proposal belongs to the foreground
or background otherwise. For the Temporal ConvNet, the C3D
network pretrained on the Sports-1M dataset [60] is utilized
as backbone for feature finetune. It produces multiple cuboid
proposals in the continuous neighbour frames and adopts them
as training data. As described in Eq. 6, all the cuboid proposals
are labeled using the averaged Intersection-over-Union (IoU)
criterion. The labels, the coordinates of the cuboid proposals
and the continuous image patches are simultaneously fed to
the Temporal ConvNet for training.
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IV. THE PROPOSED TRACKING ALGORITHM

In this section, we present the workflow of our CSTNet
tracker based on the spatio-temporal proposal refinement and
OHEM technique. The core idea is that we first calculate
the classification scores of the proposals in both spatial and
temporal detectors, then we combine the outputs of these two
branches and refine the final output target state. Meanwhile,
we introduce a contrastive OHEM strategy to find the impor-
tant hard samples, and retrain these samples to improve the
model adaptability.

A. Spatial-Temporal Proposal Refinement

During tracking, the proposals with high spatial and tempo-
ral probabilities are chosen for object state estimation. At time
step t , we randomly crop N image patches to construct the
frame-level proposal set DS and extend them in temporal
axis to construct the cuboid proposal set DT . The frame-level
proposals are fed into the Spatial ConvNet, while the coor-
dinates of the extended cuboid proposals and the continuous
multiple images are passed to the Temporal ConvNet. The
cuboid proposal with the highest temporal classification score
is selected as the coarse candidate position for target searching:

T̂t = arg max
Ti,t ∈DT

P(Ti,t ). (10)

After obtaining the coarse target state using temporal infor-
mation, we refine the target state to be more accurate by
integrating the spatial localizing information. Specifically, for
every frame-level proposal Xi,t , if the overlap rate between
Xi,t and the coarsely estimated cuboid box T̂t is higher than
a given threshold, the confidence score of Xi,t is adjusted by:

P(Xi,t , T̂t ) = P(Xi,t )+ γ P(T̂t )O(Xi,t , X̂t ), (11)

where P(Xi,t ) is the probability of the proposal in current
frame and P(T̂t ) is the score of the cuboid proposal T̂t . X̂t

is the corresponding patch of cuboid proposal T̂t in the t-th
frame. O(Xi,t , X̂t ) is the IoU of the temporal cuboid proposal
and the frame-level proposal. γ is a constant to balance the
weights of the spatial and temporal outputs. If the final score
P(Xi,t , T̂t ) is large, it means that the reliability of the proposal
Xi,t is high in both spatial and temporal domain. Thus the
optimal box X∗

t is the sample with the maximum re-scored
probability:

X∗
t = arg max

Xi,t ∈DS

P(Xi,t , T̂t ). (12)

B. Contrastive Online Hard Example Mining

As it’s impossible to collect huge amount of discriminative
samples for online update, the proposed tracker may suffer
severe model degradation during online tracking. To eliminate
this problem, here we propose a contrastive online hard
example mining method, which selects the hard samples for
network updating and embeds them to a more discriminative
feature space. The intuition of our method is shown in Fig. 4,
the hard negative proposals of David3 sequence are embedded
close to the positive proposals, thus they can’t be correctly

Fig. 4. The objective of our contrastive OHEM method, which enforces the
hard negative proposals to be embedded closer to the easy negative proposals
and further to the positive proposals.

identified by the classifier. Our goal is to embed these hard
negative samples closer to the easy negative samples and
further to the positive ones, such that the discriminative power
of the classifier will be greatly boosted.

Take the Spatial ConvNet as an example, in each
mini-batch iteration of model updating, all the samples are
forward-propagated across the classifier and the prediction
loss values are computed. Then these proposals are sorted in
descending order of the loss values. The top Nhn negative
proposals are labeled as hard negative samples, other Nen

negative proposals are labeled as easy negative samples. For
any hard negative sample fi , the distance to the center of easy
negative samples cen is ‖fi − cen‖2, the distance to the center
of positive samples cp is

∥∥fi − cp
∥∥2. We want to ensure that

the hard negative samples are closer to other easy negative
samples than the distance to the positive samples. Thus we
introduce the contrastive hard negative loss:

LC = 1

Nhn

Nhn∑
i=1

‖fi − cen‖2∥∥fi − cp
∥∥2 + δ

, (13)

where δ is a constant preventing the denominator to be 0. The
loss function during model updating is reformulated as:

L = LS + LT + λLC , (14)

here λ is a weight to balance the importance of contrastive
hard negative loss. The proposed contrastive hard negative loss
is trained only in model updating phase. Comparing with the
original OHEM method uses cross-entropy loss only, it consid-
ers the intra-class compactness of the negative samples and the
inter-class separability of samples in different categories, thus
the updated detector will be more discriminative for online
tracking.

V. EXPERIMENT

A. Implementation Details

We run the proposed CSTNet in Matlab2015b with Caffe
toolkit [61]. The hardware environment includes 8 cores
of 2.1GHz CPU and 1 TITAN-X GPU. Our tracker runs at
about 1.2 frames per second. We present the parameters of
each convolutional layer in Table I. It can be seen that the
Spatial ConvNet consists of three 2D convolutional layers
while the Temporal ConvNet consists of eight 3D convolution
layers. We utilize the pre-trained convolutional layers of
VGG-M network and C3D Network as the initialization of
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TABLE I

CONVOLUTIONAL PARAMETERS IN CSTNET

Spatial ConvNet and Temporal ConvNet. In training period,
the batch size is set to 256, the proposals in Spatial ConvNet
are resized to 107 × 107 and the continuous 4 frames in
Temporal ConvNet are resized to 224 × 224, hence the input
data size is 107×107×3×256 for Spatial ConvNet and 224×
224 × 3 × 4 × 1 for Temporal ConvNet. The hyper-parameter
γ is set to 0.3 and λ is set to 0.01. When training Spatial
ConvNet, we apply stochastic gradient descent (SGD) with
momentum of 0.9 and set the weight decay to 0.005. The
model is trained in 100 epochs with a learning rate of 0.0001.
When training Temporal ConvNet, we use AdaGrad with
learning rate 0.0001 to accelerate the training process.

B. Evaluations on OTB Benchmark

1) Dataset and Evaluation Settings: OTB2013 is a widely
used dataset proposed in [21], which contains 51 sequences
with 11 attributes, including scale variation (SV), occlusion
(OCC), deformation (DEF), etc. Wu et al. [62] extend
OTB2013 and create a larger dataset called OTB2015, which
contains 100 sequences with more complicated scenarios for
comprehensive performance analysis. Both OTB2013 and
OTB2015 datasets adopt precision and success metrics
to evaluate tracking performance. The precision metric is
measured by the Euclidean distance between the center
location of ground-truth bounding box and the estimated
center location of the tracked object. In the evaluation toolkit,
the trackers are ranked by the center distance under the
threshold of 20 pixels. The success metric measures the
overlap between the ground-truth bounding box and proposals
predicted by the tracker. All the trackers are ranked using the
area under the curve (AUC).

In our experiment, we compare the performance of our
CSTNet with 13 state-of-the-art trackers: MDNet [1], VITAL
[7], ADNet [63], DeepSRDCF [64], DLSSVM [65], CCOT
[28], SRDCF [66], DCFNet [67], SiamFC [31], MCPF [29],
SiamRPN++ [68], HCFT [26] and HDT [27].

2) Quantitative Evaluation: Fig. 5 shows the OPE evalu-
ation results on the OTB2013 sequences. To make it clear,
we only plot the top 10 ranked trackers. The proposed CSTNet
achieves the precision score of 0.947 and the AUC score
of 0.699, which are better than other trackers such as MDNet,
VITAL, SiamRPN++ and CCOT. Compared with MDNet
that only uses frame-level appearance model, the CSTNet
outperforms it in both precision and success plots. Such results
indicate that our tracker can select more reliable proposals
using spatio-temporal appearance model. Compared with the

Fig. 5. Comparison of the proposed algorithm and several state-of-the-art
trackers on OTB2013 benchmark. we evaluate distance precision and overlap
success plots over 51 sequences using one-pass evaluation (OPE).

Fig. 6. Comparison of the proposed algorithm and several state-of-the-art
trackers on OTB2015 benchmark. we evaluate distance precision and overlap
success plots over 100 sequences using one-pass evaluation (OPE).

representative correlation based tracker CCOT, CSTNet gains
the improvement of nearly 4.3% in precision plots and 3.2% in
success plots. Compared with the ADNet using reinforcement
learning, CSTNet gains the improvement of nearly 4.9% in
term of precision and 6.1% in term of success rate.

To obtain more insights on the effectiveness of the pro-
posed tracker, we further report the performance of the
aforementioned trackers on the OTB2015 dataset containing
100 sequences, the results are demonstrated in Fig. 6. CSTNet
achieves the best score of 0.917 in precision plots, which is
better than SiamRPN++ and VITAL, etc. For the success
plots, SiamRPN++ obtains the best performance with the
score of 0.684, CSTNet ranks at the second place with the
score of 0.675. Note that SiamRPN++ is pretrained using
larger datasets, i.e. ImageNet VID [69] and Youtube-BB [70],
etc. The CSTNet allows to achieve competitive performance
using fewer training samples.

C. Evaluation on Temple Color Dataset

1) Dataset and Evaluation Settings: Temple Color [71]
dataset contains 128 sequences with a wide variety of scenar-
ios. As the images in this dataset are encoded in color space,
it provides more distinguishable color information to help the
tracker separate target object from the surrounding. Similar to
OTB, Temple Color adopts precision and success rate metrics
for evaluation. For fair comparison, we use the three-channel
RGB images as input for all trackers.

2) Evaluation Results: We evaluate the proposed CSTNet
on the Temple Color dataset with 7 state-of-the-art track-
ing methods: MEEM [8], Struck [36], DeepSRDCF [64],
SRDCF [66], SRDCFdecon [72], MCPF [29], and CCOT
[28]. The overall performance is shown in Fig. 7. Among
these trackers, the CSTNet, CCOT and MCPF achieve the
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Fig. 7. Precision and success plots over the 128 sequences using one-pass
evaluation on the Temple Color dataset. Our CSTNet achieves the best
performance against other state-of-the-art methods.

Fig. 8. Expected average overlap (EAO) ranking on VOT2016 challenge.
We choose 23 representative trackers in this figure for clarify.

top three precision and success scores of (80.4%, 58.5%),
(78.1%, 57.4%) and (77.4%, 54.4%) respectively. Our CST-
Net obtains performance gain of 2.9% and 1.9% in the
precision and success plots against CCOT. In overall, CSTNet
significantly outperforms other correlation filter based trackers
and shows remarkable results when handling color encoded
images.

D. Evaluation on VOT Benchmark

1) Dataset and Evaluation Settings: VOT is a popular
benchmark which aims at comparing short-term model-free
single-object visual trackers. The most recent VOT challenge
applies a reset-based methodology. When a tracker predicts
a bounding box without any overlap region with the ground
truth, the toolkit reports a failure case and the tracker is
re-initialized five frames after the failure. In the toolkit, three
representative measures are used to analyze tracking perfor-
mance: accuracy (A), robustness (R) and expected average
overlap (EAO). In this article, we test our tracker on VOT2016
[73] and VOT2017 [74] benchmarks.

2) VOT2016 Results: Fig. 8 reports the results of 23 repre-
sentative trackers on the VOT2016 dataset. CSTNet achieves
EAO with 0.349, which significantly outperforms CCOT and
VITAL with a gain of 5.4% and 8.0% in terms of the
EAO metric. What is more, we also report the accuracy and
robustness scores of some tracking-by-detection based trackers
in Table II. Here the SiamRPN and SiamRPN++ trackers are

TABLE II

COMPARISON WITH THE STATE-OF-THE-ART TRACKERS ON THE
VOT2016 DATASET. THE RESULTS ARE PRESENTED IN TERMS OF

ACCURACY (A), ROBUSTNESS (R) AND EXPECTED AVERAGE

OVERLAP (EAO). THE BOLD NUMBER INDICATES THE RESULT

RANKED AT THE FIRST PLACE

Fig. 9. Expected average overlap (EAO) ranking on VOT2017 challenge.
We choose 23 representative trackers in this figure for clarify.

trained using ImageNet VID dataset [69] for fair comparison.
It shows that CSTNet achieves leading performance in the
robustness and EAO metrics. All of the trackers taken into
comparison in the table list are state-of-the-art algorithms. our
tracker mainly gain low ranking score in the sequences of
Helicopter, Pedestrian2, Singer3, etc, because the target scale
changes drastically in these videos, the corresponding temporal
information learned in Temporal ConvNet may become unreli-
able. In the challenging sequences with illumination variation
or partial occlusion, our proposed CSTNet is able to track
target better since fine-grained spatio-temporal information is
balanced for target state inference.

3) VOT2017 Results: VOT2017 is a more challenging
dataset consisting of 60 videos and provides a ranking system
for performance analysis. Fig. 9 reports the results of 23 rep-
resentative trackers on the VOT2017 dataset. Our tracker is
superior to other state-of-the-art trackers. CSTNet achieves
the EAO score of 0.325, which significantly outperforms the
detection based trackers DLST and SPCT in terms of the
EAO metric. Compared with the representative correlation
filter based trackers like CFWCR and ECO, CSTNet achieves
the performance gains of 7.3% and 16.0% respectively in the
EAO metric.
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Fig. 10. Precision and success plots of CSTNet and its variants using one-pass
evaluation on the OTB2015 dataset. The numbers in the legend indicate the
average distance precision scores at 20 pixels and the area-under-the-curve
success scores.

E. Ablation Analysis

1) Ablation Study of Different Variants: We perform the
analyses in two types of variants: 1) to illustrate whether the
temporal information is helpful or not. We use the Spatial
ConvNet trained by the cross-entropy loss as the baseline
for evaluation. Then we add the temporal branch to examine
the effectiveness of the Temporal ConvNet. 2) To verify
the effectiveness of the contrastive OHEM, we conduct the
experiment utilizing the contrastive OHEM strategy for com-
parison. Therefore, the trackers evaluated in this experiment
are summarized below:

• SNet: Adopt the Spatial ConvNet only and use OHEM
for target state inference;

• STNet: Spatial ConvNet and Temporal ConvNet are
trained and updated using OHEM for target state infer-
ence;

• CSTNet: Spatial ConvNet and Temporal ConvNet are
trained and updated with contrastive OHEM for target
state inference;

We provide quantitative evaluation by calculating the under
AUC and average distance precision scores. The complete
results are shown in Fig. 10. CSTNet obtains the precision
0.917 and the AUC 0.675 on OTB2015 dataset. Compared
with SNet, STNet employing spatial and temporal information
achieves the performance improvements of 2% and 2.4% in
precision and success plots. After introducing the contrastive
OHEM strategy, CSTNet also boosts the results over STNet
slightly in precision and success plots. Such results verify the
effectiveness of our Temporal ConvNet and the online model
updating methodology.

2) Comparison of Spatial Feature Extractors: We conduct
the ablation experiment to analyze the effect of changing
different spatial feature extractors in CSTNet. To eliminate the
influence of the temporal detector, here we only adopt the spa-
tial branch for target state inference. Four deep architectures
including AlexNet, VGG-M, VGG-16, ResNet18 are evaluated
in this experiment, the results are shown in Table. III.

Intuitively speaking, the tracker using deeper architecture
is capable to extract more discriminative features for target
localizing. Limited by the insufficient feature representation
in shallow network, variant of the tracker utilizing AlexNet as
feature extractor achieves the lowest precision and success rate
scores on both OTB2013 and OTB2015 datasets. The tracker

TABLE III

ABLATION STUDY OF THE CSTNET USING DIFFERENT BACKBONES.
WE CHANGE THE SPATIAL CONVNET BRANCH AND EVALUATE THE

VARIANTS ON OTB2013 AND OTB2015 DATASETS FOR

FAIR COMPARISON

TABLE IV

COMPARISON WITH OTHER SPATIO-TEMPORAL BASED TRACKERS ON

OTB2013 AND OTB2015 DATASETS. THE BOLD NUMBER INDICATES

THE BEST RESULT OBTAINED IN THE EXPERIMENT

using VGG-M obtains higher precision and success rate scores
owning to the discriminative features learned in the network.
However, when the network is changed to VGG-16 or ResNet-
18, we only obtain very trivial performance gains. The reason
is that the performance of the deep tracking-by-detection
trackers is highly determined by the model adaptability during
online tracking period. Although the deeper architecture pro-
vides more semantic features, the target localizing capability
is still limited by the domain gap between the online update
and offline trained models. Therefore, simply stacking deeper
architecture can not effectively improve the performance in
this method.

3) Comparison of Spatio-Temporal Trackers: We compare
our CSTNet with existing spatio-temporal based trackers to
validate the effectiveness of our methods. Four trackers utiliz-
ing spatio-temporal visual information are tested, including
WALSA [9], STL [43], STCL [44] and FlowTrack [47].
The tracking results are presented in Table. IV. Our method
not only achieves the best performance on OTB2013 and
OTB2015 datasets, but also significantly outperforms WALSA
[9], STL [43] and STCL [44] with relative gains in both
precision and success rate metrics.

4) Ablation Study of Hard Example Mining: We investigate
the performance changes using different hard example min-
ing approaches in the proposed framework. The contrastive
OHEM is compared with three methods: the original OHEM
[15], the focal loss [54] and ASDN [55]. We conduct this
experiment on OTB2015 dataset and report the success rate of
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TABLE V

COMPARATIVE STUDY OF ADOPTING DIFFERENT HARD EXAMPLE MIN-
ING STRATEGIES IN THE MODEL. THE RESULTS ARE REPORTED ON

OTB2015 DATASET MEASURED BY SUCCESS RATE SCORES FOR

QUANTITATIVE ANALYSIS

Fig. 11. Comparison of the proposed trackers using different refinement
strategies. The results are reported on OTB2013 and OTB2015 datasets for
quantitative analysis.

these approaches in the videos with 5 challenging attributes,
including occlusion (OCC), non-rigid deformation (DEF),
illumination variation (IV), in-plane rotation (IPR) and motion
blur (MB). The comparative results are shown in Table. V.
We can observe the proposed contrastive OHEM not only
achieves the highest overall performance than other methods,
but also ranks at the top place in the videos with challenging
attributes like non-rigid deformation and illumination varia-
tion, etc. The proposed approach improves the performance
with a gain of 2.4% against the standard OHEM. Compared
with focal loss and ASDN, it also obtains performance gains
of 1.5% and 1.0% in the success rate metric.

5) Effect of Different Refinement Strategies: The validity
of our tracker is also influenced by the refinement strategy.
In this experiment, We evaluate the effect of two types of
refinement approaches within the proposed framework. The
first approach firstly predicts the scores of the spatial proposals
and selects reliable proposals with high scores. Afterward,
the cuboid proposals corresponding to the coarsely selected
spatial proposal are sent to the temporal branch for further
refinement, this method is referred to as CSTNet-ref1. If we
change the order of such procedure, the alternative method
is referred to as CSTNet-ref2. The performance of these
variations is shown in Fig. 11.

We can observe that the CSTNet-ref2 outperforms CSTNet-
ref1 in terms of precision and success rate scores on
both OTB2013 and OTB2015 datasets. The CSTNet-
ref1 that employs coarsely spatial refinement first achieves
the precision score of 0.923 and success rate score
of 0.668 on OTB2013 dataset, which is lower than the
score of (0.947, 0.699) obtained by CSTNet-ref2. On the
OTB2015 dataset, CSTNet-ref1 achieves the precision and

TABLE VI

ANALYSIS OF THE GENERALIZATION ABILITY OF THE PROPOSED METHOD
IN SIAMRPN BASED TRACKERS. THE RESULTS ARE REPORTED ON

OTB2015 DATASET FOR COMPARISON

success score of (0.890, 0.643), such result is still lower than
the performance of (0.917, 0.675) obtained by CSTNet-ref2.
Since the Spatial ConvNet is more powerful in target-specific
localizing while the Temporal ConvNet is more capable to
capture the long-range temporal dynamics, the CSTNet-ref2 is
able to hold a better balance between target localizing and
appearance consistency maintaining.

6) Discuss on Generalization Ability: We extend our work
to the most recent Siamese trackers such as SiamRPN [57]
and DaSiam [13] to further discuss the generalization ability
of our method. The modified SiamRPN and DaSiam trackers
are referred to as SiamRPN-T and DaSiam-T respectively due
to the added temporal branch. The performance of these two
variants are shown in Table. VI. It shows that SiamRPN-T
and DaSiam-T outperform the relative baseline trackers after
adding the temporal branch to enhance the appearance
consistency.

F. Features Learned in CSTNet

We demonstrate the spatial and temporal features learned
in CSTNet to explain what CSTNet learns internally. Fig. 12
visualizes the learned feature maps in Spatial ConvNet and
Temporal ConvNet. We can observe that the features learned
in these two branches are quite different. The spatial fea-
tures mainly focus on generic contextual appearance in the
video while the Temporal ConvNet captures significant motion
details. The complemental motion information provided by
Temporal ConvNet is particularly beneficial for the sequences
with intense appearance variations. When the deformation or
occlusion occurs, energies of the extracted temporal features
are still concentrated on the moving target rather than the noisy
background, yielding the detector to be more robust against the
local appearance changes.

G. Related Attributes Evaluation

Since the CSTNet introduces the temporal constraints into
the tracking framework, here we analyze our tracker in several
challenging situations most related to the temporal variations
in Fig. 13, including non-rigid deformation, occlusion, back-
ground clutter and fast motion. The state-of-the-art trackers
DCFNet, DeepSRDCF, MCPF, CCOT and MDNet are used
for comparison.

1) Background Clutter: In the case of background clut-
ter, many trackers are easily fooled when the contextual
background is extremely similar to the tracking target. Due
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Fig. 12. Visualization of the features learned in Spatial ConvNet and Temporal ConvNet. Figures from top to bottom demonstrate the input images, spatial
features and temporal features respectively.

Fig. 13. Distance precision plots and overlap success plots on OTB2015 dataset with challenging attributes, including background clutter, deformation,
illumination variation, and fast motion. The proposed CSTNet is superior to most of other state-of-the-art trackers.

to the temporal consistent property learned by 3D convo-
lution, CSTNet shows remarkable discriminative capability
against such kind of visual variation, it outperforms the sec-
ond best tracker by 3.4% in precision and 4% in overlap
rate respectively. For example, in Box and Bolt2 sequences
(Fig. 14(a) and Fig. 14(b)), the target gradually moves to
the region with cluttered background, the similarity between
background and target becomes fairly close. Benefitted from
the temporal consistency constraint, CSTNet performs well in
these cases.

2) Non-Rigid Deformation: In challenging sequences with
non-rigid deformation, trackers may lose track of the target
when the appearance changes drastically in the video. For
clarity, we demonstrate the performance of the tested trackers
in Bird1 sequence (Fig. 14(c)) with rapid appearance deforma-
tion, we can see that the DCFNet, DeepSRDCF, MCPF and
CCOT lose track of the target in most of the video frames

due to significant deformation, MDNet loses target in several
frames and captures the target owing to the assignment of
re-detection module in its framework. the proposed CSTNet
consistently locates the target with high accuracy over the
video.

3) Illumination Variation: Illumination variation is another
challenging factor that affects the target visual appear-
ance. By exploiting the spatio-temporal information model,
we improve the overall performance by 2.8% and 1.3%
in precision and success plots. A typical example can be
found in the Singer2 sequence (Fig. 14(e)), DCFNet, MDNet
and CCOT fail to predict the correct position due to severe
illumination change, but the CSTNet still stably tracks the
objects without target losing.

4) Fast Motion: Moving target with fast motion charac-
teristic can be frequently found in video sequences. For the
subdataset with fast motion attribute, the CSTNet obtains the
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Fig. 14. Tracking results of challenging sequences, including Box, Bolt2, Bird1, Freeman4, Singer2 and Ironman.

best performance in both precision and success plots. As the
CSTNet adopts dense examples sampling methodology for
target position searching, compared to other trackers using
correlation filter framework, CSTNet creates proposals in a
broader searching area, which makes it to be more robust
against fast motion. An example can be found in the Ironman
sequence (Fig. 14(f)), although the target moves quickly in
the continuous frames, CSTNet is able to correctly select
proposals which is far from the previous state over time.

VI. CONCLUSION

In this article, we propose a contrastive spatio-temporal
aware tracking method, which combines spatial and temporal

visual information together to track the target object. Our
approach consists of two branches. The Spatial ConvNet is
designed to localize tracking object using frame-level features,
and the Temporal ConvNet is designed to perform 3D convolu-
tion to capture the target temporal motion information among
the neighbour frames. The network discards the unreliable
proposals and adopts a spatio-temporal refinement strategy
to get more accurate target state. Furthermore, we propose
a contrastive online hard example mining method to enforce
the model adaptability during the model updating stage.
Experimental results show our approach achieves superior
performance on the prevalent OTB, Temple Color and VOT
datasets.
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